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Abstract

Recent research has demonstrated the fundamental poten-
tial of smart heat meter (SHM) data. However, it has also
been shown that the usability of the data is reduced be-
cause SHM energy measurements are commonly rounded
down (truncated) to kilowatt-hour values. This study there-
fore investigates, for the first time, the error introduced by
truncation using a high-resolution dataset. Furthermore, a
method is developed to reduce the loss of information in the
truncated data by combining smoothing with a ruleset and
scaling approach (SMPS). SMPS is shown to increase the
pointwise accuracy and correlation of the truncated data
with the full-resolution data.

Introduction

In the last years, the field of the built environment has been
witnessing a transition as a large amount of data from the
building stock has become available. Consequently, the
debate in the building sector has moved from “whether”
to "how” to use the gathered data. The district heating
(DH) sector is no stranger to this transition, with smart
heat meters (SHMs) (remotely readable heat meters) being
mandatory for every building within the European Union
(EU) connected to district heating from 2027 on (European
Parliament, 2018). Already yet, data measured by SHMs
are widely available for large shares of the building stock,
and their high potential for a large variety of purposes has
become evident from current research (e.g. do Carmo and
Christensen, 2016; Gianniou et al., 2018a,b; Kristensen
et al., 2018; Calikus et al., 2019; Kristensen et al., 2020;
Leiria et al., 2021). However, research also clearly indi-
cates that the low transmitted measurement resolution from
commercial SHMs is a hurdle for its use (Kristensen et al.,
2018; Hedegaard et al., 2020; Hauge Broholt et al., 2022;
Leiria et al., 2022).

Commercial SHMs transmit all data at a significantly lower
resolution than the actual measurement resolution (Figure
1) to reduce the bandwidth required (Schaffer et al., 2022)
and to match the billing model used by the DH utilities.
This means that the combined space heating and domestic
hot water (DHW) usage is transmitted as cumulative val-
ues rounded down to the greatest integer value less than
or equal to the cumulative value (Kristensen et al., 2018;
Schaffer et al., 2022). For example, any value between 1.0
and 1.9 is transmitted as 1.0. This can therefore also be
described as truncating the value to integers, i.e. truncating
the decimal values. Both terms, truncation and rounding,
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will be used interchangeably in the remainder of this paper.
This low transmitted resolution introduces a considerable
relative uncertainty for data on a high granularity (e.g.,
small-scale customers, such as apartments or single-family
houses) where the heating demand is low. As a result, this
requires decreasing either the spatial or the temporal granu-
larity/resolution of the data (Kristensen et al., 2018), which
might reduce the value of the data and knowledge gain.
No similar research efforts attempting to address this or a
similar problem through approaches other than reducing
granularity or temporal resolution could be identified. It is
assumed that this is because it is a specific problem for an
emerging area of research.

For this reason, this study analyses, for the first time, the
truncation error based on a high-resolution SHM dataset.
An approach is then developed to increase the usability of
truncated data by partially recovering the true underlying
trend of the data. The results of this new approach are eval-
uated with high resolution sub-meter data (ground truth).
The knowledge gained about the error, combined with the
developed method, aims to increase the value and usabil-
ity of commercial SHM data for research and industrial
applications in the building and DH sectors.

Method

As noted above, measured energy consumption is transmit-
ted by commercial SHMs as cumulative values in kilowatt-
hours rounded down to integers, and thus has an accuracy
of —1.0kWh (Figure 1). However, the most common anal-
yses do not use cumulative values, but hourly energy use
calculated as a first-order difference (the difference between
a value and its predecessor). In the remainder of the pa-
per, energy use refers to non-cumulative data. Calculating
energy use reduces the accuracy of the data to £1.0 kWh.
However, not only does this reduce the theoretical accuracy,
but the truncation can also obscure the actual pattern of
energy use by introducing on/off like patterns (Figure 1
bottom right).

High-resolution dataset description

A high resolution dataset is used to analyse the truncation
error and to test the proposed algorithm’s accuracy. The
dataset, previously used by Marszal-Pomianowska et al.
(2019) and Leiria et al. (2022), consists of 28 single-family
houses in Denmark that have been renovated to Nearly Zero
Energy Building standard (between 2012 and 2020). The
apartments are equipped with radiators and underfloor heat-
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ing and have a floor area of between 97 m? to 112 m”. The
energy use for space heating and DHW were recorded with
a temporal resolution of one hour. To mimic the process of
commercial SHMs (Figure 1), the energy for space heating
and DHW were first combined, then the hourly high reso-
lution measurements were accumulated and truncated to
integer values, before the hourly energy use was calculated
based on the truncated cumulative data.

As ~25 % of the data were missing, it was decided to im-
pute them. Since the scope of this work is to assess and
reduce the truncation error in SHM measurements, it is not
essential that the imputed values are exact, but that their
pattern is plausible, i.e. the values are within a realistic
range and the pattern follows the existing data. Thus, gaps
up to 48 values, representing 99 % of all gaps, were im-
puted using the mean of 24 h and 48 h leading and lagging
values, i.e. the mean of the value at the same time step two
days before, one day before, one day ahead and two days
ahead (in the original full resolution data). The resulting
data were visually assessed (Figure 2) and it was concluded
that this imputation produced plausible results. As long
missing gaps (>48 values) remained, the data were split at
the missing values, with the remaining sequences having
to be at least seven full days long (186 values). This left
166,392 data points in 83 sequences (length between 19
and 183 days; mean of 84 days).
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Figure 2: Example of one week of hourly energy use data with
imputed values demonstrating the suitability of the chosen
imputation approach. The large imputed gap in the middle is 48
values long.

Analysis of rounding error

The error introduced by truncating the cumulative val-
ues was expected to be uniformly distributed with limits
0kWh and 1.0kWh. Applying a one-sample Kolmogorov-
Smirnov test for each month separately showed that this as-
sumption can be considered plausible for the winter months
(March, April and October - December) but not for the sum-
mer months (May - September) (Figure 3). Further analysis
of the truncation error in the energy use data revealed an
unexpectedly high number of 0 kWh errors during the same
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Figure 3: Analysis of the truncation error based on the high-resolution dataset used. The denoted p-values are from a one-sample
Kolmogorov-Smirnov test against a uniform distribution with limits 0kWh and 1.0 kWh.

summer months. This unexpectedly high number of 0 kWh
errors for energy use was traced back to the hours with
actual energy use of 0 kWh. Thereby, two (or more) times,
the same truncated cumulative values are transmitted by
commercial SHM. Consequently, these data points have the
same truncation error in the cumulative data, which shifts
the distribution of the truncation error away from a uniform
distribution, explaining why the error is not uniformly dis-
tributed for some months. At the same time, the repeated
transmitted values correctly lead to 0 kWh for the energy
use, which explains the high number of hours without error.
This was also confirmed by analysing the frequency of
hours with 0 kWh per day in the dataset used, as shown
in Figure 4, which also shows that the truncated data can
still be used as a proxy to identify months/days with a high
number of hours with 0 kWh energy use.
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Figure 4: Frequency of hours with 0kWh energy use per day, as
a daily and monthly average.

An analysis of the error distribution when removing hours
with an actual energy use of 0 kWh (Figure 5) showed that
in this case the truncation error in the cumulative values for
all months could be considered as coming from a uniform
distribution (limits: 0 kWh and 1.0 kWh). The number of
0kWh errors for the energy use was thereby drastically
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reduced to an expected level. The distribution then resem-
bled approximately a normal distribution for the winter
months, with the majority of errors between —0.5 kWh and
0.5 kWh. Consequently, it appears that the error introduced
by truncating the energy use in winter is a combination of
an approximately normal distribution when actual energy
use is not zero and zero error when actual energy use is
zero. For the summer months, no clear theoretical distribu-
tion could be identified, but the majority of errors are still
between —0.5 kWh and 0.5 kWh. It is hypothesised that
this is related to the different energy use, heating and DHW
in winter and mainly DHW in summer, but this could not
be definitively confirmed.

Recovering algorithm - SPMS

The issues caused by truncation described above, in par-
ticular the masking of the energy use pattern, inspired the
authors to approach this as a smoothing problem. The three
main conceptual points of the developed method, which
can be summarised as Smooth - Pointwise Move - Scale
(SPMS), are outlined below:

1) Smooth: Smooth the truncated energy use

2) Pointwise Move: Ensure that some chosen pointwise
accuracy (maximum deviation from the truncated
data) is obeyed and that obtained values are positive

3) Scale: Ensure that the resulting data over a specified
period sums up to the same amount as the truncated
data

The idea behind the first step, smoothing, is to even out the
on/off patterns caused by the truncation (Figure 1 bottom
right). In principle, any smoothing technique can be con-
sidered. However, given the expected large amount of data,
it should be computationally efficient. The second step en-
sures that SPMS does not lead to values that are known to be
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Figure 5: Analysis of the truncation error based on the high-resolution dataset used, when all hours with real 0 kWh energy use are
excluded. The denoted p-values are from a one-sample Kolmogorov-Smirnov test against a uniform distribution with limits 0 kWh and
1.0kWh.

impossible, i.e. deviating by more than 1.0 kWh from the
truncated values or being negative. However, based on the
analysis of the distribution of the truncation error of energy
use, the optimal allowed pointwise deviation is expected
to be smaller than the theoretical maximum of £1.0 kWh.
In addition, it is not known whether the optimal allowed
pointwise deviations might differ between periods with a
high and low number of hours with 0 kWh energy use. This
will be investigated as part of the case study analysis. The
third step of SPMS ensures that the cumulative trend of
the data is followed. This is done by scaling the obtained
values uniformly so that, over a defined period of time, the
recovered data sums up to the same amount as the truncated
data. The length of the chosen period over which this is
done (e.g. a day, a week) represents a trade-off between
the acceptable deviation in cumulative values per period
and the acceptable relative error per period introduced by
truncating the cumulative values (i.e. a longer period with
high cumulative energy has a smaller relative truncation
error). Steps two and three are performed in a loop until
the conditions of both steps are fulfilled.

Case study

With the proposed algorithm defined, the next step was
evaluating the algorithms’ performance. Therefore, the
high-resolution dataset, is used. In the following, the dif-
ferent tested SPMS settings and the evaluation criteria are
outlined.

SPMS settings

As mentioned above, any smoothing technique can be used
for SPMS. For this work, the focus fell on a moving average
(MA) and regression using Fourier basis functions (RFB).
RFB was applied to the data structured in days, i.e. each
day was treated as a separate sequence for smoothing, while
MA was applied to the whole sequence. For both smooth-
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ing techniques, various settings were varied to control the
smoothing. For RFB, the number of basis functions was
changed from 3 to 23 (accounting sine and cosine pairs plus
the constant) to evaluate different degrees of smoothing.
For the MA the following parameters were analysed:

 Alignment of value within the window (window align-
ment): left, centre, and right

* Weighting: simple (equal), linear, exponential
* Window size: 2 to 6 values

In addition to these smoothing related parameters, the maxi-
mum pointwise deviation was also tested as it was expected,
based on the rounding error analysis, that the optimal devia-
tion would be <1.0kWh and >—1.0kWh. The maximum
allowed pointwise deviation was varied symmetrically from
+0.1kWh to 1.0 kWh in steps of 0.1 kWh.

For step three of SPMS, one day was chosen as the period
over which the newly recovered data must sum up to the
same amount as the truncated data. Firstly, because the cu-
mulative energy consumption per day (mean =20.66 kWh)
is high enough that the truncation error is relatively small;
secondly, because the data usually has a daily trend; and
thirdly, because a day is a 'natural’ unit of time, which
simplifies processing.

Evaluation criteria

To evaluate the accuracy of SPMS and find its optimal
setting, the newly calculated energy use was compared
against the real measured ones with full resolution. Each
day was separately evaluated. The Normalised Root-Mean-
Square Error (NRMSE) was used to assess the pointwise
accuracy (equation 1).
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Figure 6: Distribution of mean results for each smoothing method as a function of the maximum allowed pointwise deviation from the
truncated data. Based on the whole available data period (MA = moving average, RFB = regression using Fourier basis functions).

Where 7 is the number of data points per day (24), p; is the
new value at time instance 7, o, is the real observed value
at time instance ¢, and ¢ is the mean of the actual observed
values. It is to be noted that for days where 6 = 0, i.e. no
energy use is recorded for the whole day, the NRMSE is not
defined and such days were not considered for evaluation.
These days are expected to occur mainly during the summer
period, when DHW drives the energy use, and consequently,
no energy is used if occupants are, for example, not at
home. Additionally, the Pearson correlation coefficient
(PCC) was used to evaluate the agreement between the
trend of the calculated data and the original data. The
PCC was calculated separately for each day, excluding days
where it was not defined, e.g. where the standard deviation
was Zero.

Results

First, the maximum pointwise deviation over the whole
data period was analysed. Figure 6 shows the distribution
of the mean results (mean over all days) for each smoothing
method with its different settings. It can be seen that the
maximum pointwise deviation has a significantly more de-
cisive influence than the smoothing methods. A maximum
pointwise deviation of 0.3 kWh or +0.4 kWh leads to the
most favourable results for both the NRMSE and the PCC.
The same evaluation was done for the results split based on
the monthly average frequency of hours with 0 kWh energy
use per day (Figure 4), whereby only the truncated data was
considered (as the high-resolution data would typically be
not available) and 10 hours were used as the threshold. Sum-
mer months and winter months were consequently analysed
separately. The results showed overall the same trend for
both periods as the results for the whole period (Figure 6).
Again, a maximum deviation of 0.3 kWh or £0.4 kWh
gave the best results. This demonstrates that one maximum
pointwise deviation can be used for both summer and win-
ter periods. Additionally, it was found that the magnitude
of the NRMSE decreases significantly in winter (0.38 to
0.55) while it increases in summer (1 to 1.4). This was
expected as the average energy use was lower in summer
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than in winter. The PCC remained for both periods similar
to that obtained for the whole period (Figure 6).

Overall, it was found that MA with a linear weighting, a
centre-aligned window with a length of 5, and a maximum
pointwise deviation of 0.4 kWh leads to one of the best
results for both periods and the best result for the whole
data period (Figure 7). This maximum pointwise deviation
of 0.4 kWh is also supported by the analysis of the error
introduced by truncation (Figure 5) which showed that the
majority of errors lays between £0.5 kWh. With this set-
ting, SPMS decreased the NRMSE by 0.20 and increased
the PCC by 0.03 compared to the truncated data.
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Figure 7: Mean over all days, for MA with a linear weighting
and a maximum allowed pointwise deviation of +£0.4 kWh.
Based on the whole available data period.

Two exemplary days were chosen to compare the energy
use obtained from SPMS with optimal settings with the
energy use of the original high-resolution data and the trun-
cated data (Figure 8). It is evident that SPMS successfully
reduces the on/off pattern of the truncated data and yields
energy use curves close to the original high-resolution data.



However, the influence of the truncated data on the results
from SPMS is also evident.
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Figure 8: Daily energy use curves for two exemplary days, based
on the original high resolution data, truncated data and results
obtained from SPMS

Based on the previously observed influence of the truncated
data on the results of SPMS, the change in NRMSE and
PCC for each day compared to the truncated data (in relation
to the high resolution data) was analysed for SPMS with
optimal settings. As shown in Figure 9, there is a clear
correlation between the results of the truncated data and the
results obtained from SPMS, confirming the relationship
seen previously. Although SPMS did not yield favourable
results for all days, overall the positive effect exceeds the
negative in quantity and magnitude. This confirms SPMS’
overall usability but also highlights that SPMS’ accuracy
correlates to the truncated data’s accuracy.

Conclusion & Discussion

Recent research has shown the principal potential of smart
heat meter (SHM) data in the district heating (DH) sector.
Nevertheless, it has also become evident that the low trans-
mitted measurement resolution from commercial SHMs is
a hurdle for many applications. Therefore, for the first time,
the error introduced by commercial SHMs when rounding
down the transmitted data has been analysed. Addition-
ally, a method, SPMS, has been proposed to improve the
accuracy and hence the usability of such truncated data.

The analysis of the error introduced by truncation showed
that for cumulative energy data, the error in principle fol-
lows a uniform distribution with limits 0 kWh and 1.0 kWh.
However, frequent periods with an actual demand of 0 kWh
can shift the error away from a uniform distribution. For the
energy use (non-cumulative values) in the winter months,
the error is a combination of an approximately normal dis-
tribution when the actual energy use is not zero and zero
errors when the actual energy use is zero. No theoretical
distribution could be found for the summer months. This
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knowledge can support the estimation of confidence in the
results obtained from such SHM data.

The proposed method to improve the accuracy of such trun-
cated data, SPMS, shows promising results. With optimal
settings, a moving average with linear weighting, a centre-
aligned window of length 5, and a maximum pointwise
deviation of +0.4kWh, SPMS can reduce the NRMSE
(—0.20) and increase the PCC (+0.03) of the truncated data
relative to the high-resolution data. This improves the us-
ability of such data for subsequent analysis. However, the
results also clearly show that the performance is correlated
with the truncated data, i.e. if the truncated data has a
low PCC and/or a high NRMSE, the results of SPMS are
limited by this. Therefore, while SPMS can mitigate the
problems caused by low transmitted resolution, it cannot
completely overcome them. This highlights the need to
change the transmitting resolution of commercial SHMs.
Therefore, utility companies need to start recognising the
potential value of SHM data beyond billing and act to adapt
their systems and transmission infrastructure to increase
the usability of the data.

Data and code availability

The data used in this study cannot be shared due to
GDPR restrictions. All code used in this work, is avail-
able at: https://github.com/markus-schaffer/
shm-truncated-analyses
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