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Abstract

The building sector is one of the most resource-intensive
and carbon-intensive sectors in the European Union and
globally. Reliable building performance data are essential
for providing the evidence needed in the design of energy
efficiency interventions and planning of decarbonisation
strategies for the existing stock. Indeed, the development of
effective solutions aimed at lowering energy consumption,
emissions and costs in existing buildings is an open
challenge where actual performance characterisation is
crucial. The normalisation of measured energy
consumption with respect to weather and usage patterns
may be performed in a straightforward and scalable manner
leveraging state-of-the-art approaches that can, in turn, be
linked to more detailed simulation techniques and used to
inform both design and operational decisions. In this study,
10 public buildings in the Italian city of Melzo were
analysed and modelled to address the above-mentioned
challenges while streamlining and partially automating the
process of building stock digitalisation.

Introduction

Data-driven building energy modelling methods that use
machine-learning techniques have been shown to be useful
in a variety of applications (Hong et al., 2020), from design
(Westermann and Evins, 2019) to operation (Manfren et al.,
2020b). As a result, they have the potential to become a key
tool for accelerating the ongoing process of building stock
decarbonisation (Norton et al., 2021) as well as an integral
part of innovative services and technologies (Manfren et al.,
2021a), where digitalisation is a key component.

Nonetheless it is challenging to introduce data-driven
methods effectively and reliably in the process of digital
transformation of built environment. Establishing a robust
baseline data-driven energy model using measured energy
consumption (with data collected on a continuous basis) at
the whole facility or sub-facility/sub-meter level over a
given period and calibrating (Chong et al., 2021)
simulations of the energy consumption using more detailed
tools, for example, is a challenging task in and of itself and
becomes even more daunting if this is not done using a
simple, interpretable, and reproducible methodology.

For this reason, in this research, regression models trained
on measured building energy consumption are used in
combination with simulated building performance to
highlight the potential use of (interpretable) data-driven
methods with more detailed simulation techniques. A
cohort of 10 public buildings located in Melzo, which is a

town in the northern Italian province of Milan, was selected
as a test. The goal of this research was testing a way to
streamline and making the energy model calibration process
more robust, considering the evidence collected in previous
research and the request from the public administration,
described in the background and motivation section
hereafter.

Background and motivation

This article is the result of a multi-year research contract
between Politecnico di Milano (ABC Department) and the
Melzo Municipal Administration. The primary objective of
the study is the digitalisation of a portion of the municipal
existing building stock, and the study's title is “Informative
Modeling of the Real Estate Assets for Strategic Planning
and Programming of Energy Retrofit Interventions and
Redevelopment of the Built Environment”. Politecnico di
Milano research group has carried out the following
activities:

1. Survey and acquisition of available information
(building geometry, construction technology, building
services, energy consumption, etc.).

2. Verification of the adequacy of the spaces in
accordance  with  current legislation  (school
construction, fire protection, accessibility, state of
conservation).

3. Creation of a simplified model for calculating energy
performance that can be used to hypothesise targeted
retrofit interventions, connected to an economic
analysis, and validated with dynamic simulations.

4. Creation of simplified BIM models to be used as a
single digital archive of building information to
support technical evaluation.

5. Development of an electronic building dossier that
collects and organises the documentation supplied to
the BIM model of each building.

The research procedure involved 21 structures, such as
schools, libraries, town halls, theatres, senior centres,
bowling alleys, youth centres, sports centres, and gyms,
among others. The experimental work reported in this
study, which considers a group of 10 buildings for brevity,
does not include all the buildings. Regarding point 3,
different computation methods have been employed over
the duration of the research, and some of them have been
abandoned as unsuitable (due to time, effort, and cost
constraints). One of the goals of the digitalisation process is
to provide useful analytics regarding buildings' energy
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consumption and costs, so that the administration can
allocate funds appropriately. The strategy can be
periodically revised in light of the evolution of the building
stock. The most recent iteration of the modelling approach
proposed in relation to point 3 mentioned above requires
few input data and is structured based on measured
consumption; the work presented here aims to expand this
concept with data-driven methods to support and streamline
the calibration process further in its development, in
relation to the integration of simple baseline data-driven
energy models to be used in combination with more detailed
dynamic simulation tools.

Literature review

Providing the administration with the ability to allocate
financial resources for efficiency measures appropriately is
among the goals of the project; hence, the concept of
structuring the modelling tools around measured energy
performance is crucial. However, due to the dynamic
variability of operational conditions, metered energy
consumption must be normalised by weather and other
factors affecting operation (occupancy, periods of
operation, etc.).

This part of the energy modelling workflow is frequently
indicated as baseline energy modelling and it is indeed
crucial also in the case of building retrofit because it
guarantees the correct estimation of the energy performance
better retrofit and the related costs (Manfren et al., 2022b).
Multiple techniques can be used for this purpose and have
been reviewed recently by (Grillone et al., 2020) and
(Alrobaie and Krarti, 2022). Focusing on data-driven
methods (Fu et al., 2021) indicated how, over the years, a
large part of researchers and analysts have continued to
prefer piecewise linear (change-point, segmented)
regression models using outdoor air temperature as an
independent variable and additional variables to subset data
with respect to operation modes. Further, as shown by
(Afroz et al., 2021), other techniques may outperform
piecewise linear regression, but regression is more
insightful do to its interpretability (ISO/IEC, 2020). This
issue has been reviewed by (Chen et al., 2023), indicating
the issue of “ante-hoc” (or intrinsic) and “post-hoc”
interpretability. Piecewise linear models are intrinsically
(ante-hoc) interpretable, so they are the preferred approach
in this case, if they respect the criteria for model
acceptability specified later in this section.

The starting point for the analysis of measured energy
consumption is the consolidated variable-based degree-
days regression, originally proposed by Kissock et al. in the
Inverse Modeling Tool (IMT) (Kissock et al., 2003) which
has been included in standard ASHRAE 14:2014
(ASHRAE, 2014) and has been steadily evolving with
different algorithmic formulations, that offer some benefits
in relation, for example, to the improved scalability
(temporal and spatial) of the modelling approaches
(Manfren et al., 2021b), and to the possibility to be used
across different phases of the building life cycle (Manfren
et al., 2020b).

At the same time, regression-based formulations could
enable the approximate physical interpretation of the

quantities estimated (Rasmussen et al., 2020; Tronchin et
al., 2019), including components of the building energy
balance energy balance's components (Vesterberg et al.,
2016a, 2016b). Further, as demonstrated by (Pistore et al.,
2019; Westermann et al., 2020), building energy data can
also be wused effectively in unsupervised learning
workflows, for instance to cluster the behaviour of
buildings with respect to a set of characteristics, and as a
function of outdoor air temperature, which is inherent to the
process of weather normalisation (Fazeli et al., 2016) and
can be easily interpreted graphically. Normalisation with
respect to occupancy can also be considered; however, this
variable is rarely recorded, and higher resolution data
techniques typically enable automated detection of
occupied hours based on electricity consumption, such as
the Time Of Week and Temperature (TOWT) regression
algorithm (Borgeson, 2013; Mathieu et al., 2011; Price,
2010). In a more simplistic way, dummy variables can be
introduced to differentiate between days of the week (daily
interval models), or months/seasons (monthly interval
models).

Methodology

Overall, the purpose of this study is to support and simplify
the process of building energy model calibration (Chong et
al.,, 2021) using as a starting point a regression-based
method which is employed for the normalization of
measured energy consumption and originates from the
Inverse Modeling Tool (IMT) (Kissock et al., 2003), now
included in standard ASHRAE 14:2014 (ASHRAE, 2014).
However, differently from its original implementation, in
this paper energy signature is used (i.e. energy divided by
the number of operating hours in the time interval of the
analysis, corresponding to an average power), as defined in
ISO 16346 (‘ISO 16346:2013). Further, data are scaled by
building size (gross volume and net floor area) as indicated
later in this section. Finally, the methods implemented use
a piecewise linearization technique (Lin et al., 2013)
employing dummy variables to tackle nonlinearity and
change points, as shown in related research (Manfren et al.,
2022a). The proposed changes compared to the standard
approach are aimed at simplifying the process of model
fitting that can be applied to a heterogeneous stock of
buildings, while retaining "interpretability" (ISO/IEC,
2020), i.e. the possibility to be easily understood in human
terms. Following are further details regarding model
construction and calibration.

Data-driven building performance analysis & building
performance simulation

The proposed method is designed for the analysis of
existing buildings with heterogeneous characteristics and
end-uses for which specific information that can be used in
building energy modelling is lacking. In previous phases of
the study, the usage of detailed and complex simulation
models was deemed too time-consuming and expensive in
relation to the goals of the public administration. A
combination of regression-based data-driven
methodologies and simplified dynamic simulations has
been applied in the research to avoid the shortcomings of
using excessively detailed and unsuitable modelling
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approaches. Recent research on this topic has shown
promising results in terms of quantification of savings due
to energy efficiency measures (Grillone et al., 2020;
Manfren et al., 2020a) and, more generally, the use of
whole-building statistical energy consumption models (Fu
et al., 2021) to aid in decision-making processes.

As indicated before, the building stock considered is
heterogeneous and, for this reason, energy signature data
are divided by gross volume as shown in research by
(Tronchin et al., 2016) and (Pistore et al., 2019). In general,
by scaling the quantities in this way it become easier to
visualise energy signature across different sets of building
as will be shown in the results and discussion section. In
general, this approach is suitable in combination with
archetypes (representing average statistical buildings) and
supervised modelling techniques (Pasichnyi et al., 2019) as
well as less “structured” data and unsupervised techniques
(Westermann et al., 2020) to find clustering, or eventually
a combination of unsupervised and supervised techniques
(Lumbreras et al., 2023).

Another fundamental advantage of energy signature
analysis is its ability to leverage approximated physical
interpretation of slopes and intercepts in the model
(Rasmussen et al., 2020), or even approximations of energy
balance's components (Vesterberg et al., 2016a, 2016b).
Considering both the thermal transmittance of the envelope
(opaque and transparent) and infiltration/natural ventilation
air-change rates, the interpretation of the regression slope is
crucial to determining the heat transfer coefficient of the
building. Even though these building parameters can be
measured in situ, this cannot be done economically at scale,
so approximations are used to estimate them from energy
metered and weather data (Manfren and Nastasi, 2019),
resulting inherently in a higher level of uncertainty
regarding the estimated quantities.

Following these considerations, regression models used in
the research are a modified version of the 3-parameter
model described in (ASHRAE, 2014), but the constant term
(i.e. base load) has been eliminated. The presence of a
consumption equal to zero in certain months (e.g. summer
months, since we are modelling metered heating services)
is handled by using dummy variables (0-1 binary variables)
used as interaction terms, as shown in previous research
(Manfren et al., 2022a). The binary variables multiply the
original variables and enable to “turn on and off” the
independent variable when necessary. Two types of models
are tested, type 1 and type 2, whose formulas are reported
in Table 1.

Table 1: Formulation of regression models

Mode Model
type formula
1 qn = ao(Xp) + a,(X,0,) + &, 1)
n-1

2 qp = ag(Xy) +a;(X,60.) + Z bym; + &,(2)

j=1

In the first case the independent variable is outdoor air
temperature, in the second case the independent variables
are outdoor air temperature and an additional dummy
variable corresponding the month of the year, used
essentially to detect seasonality in the behaviour (Hyndman
and Athanasopoulos, 2018), depending on different months
of the year.

In both cases, the dependent variables are the energy
signatures calculated from the monitored heating energy
consumption and divided by building gross volume, as will
be illustrated later in relation to the case study. The
calculation of statistical indicators reported later clear
excluded the time intervals when consumption is equal to
zero (e.g. summer months) and output solutions are
constrained to be positive, because small negative values
can be calculated sometimes near to the change-point, but
clearly they have no physical meaning.

The diagram in Figure 1 illustrates the two different parts
of the workflow, the one involving measured data (top) and
the one involving simulated data (bottom). Regression
(model training) is used to normalize performance and, if
the model is within the calibration limits reported at the end
of this Section (model evaluation), can make measured and
simulated data correctly comparable (model prediction).
The difference between measured and simulated
(normalized) results can inform the calibration process (as
a feed-back loop), leveraging basic interpretability (e.g.
slope and balance-point of the regression model) or more
detailed physical interpretation of quantities, as indicated
before.

Data preparation Model creation [Model deployment
Data Datapre-| | | | Model Model ||| | Model
gathering processing training evaluation prediction
Data Building | | | | Model Model ||| | Model
i imulati training luation prediction

Figure 1: Modelling workflow diagram

Calibration criteria for models’ acceptability

Table 2 provides the acceptability thresholds for regression
models calibrated with monthly data, as suggested by
Measurement and Verification (M&V) protocol ASHRAE
14:2014 (ASHRAE, 2014), considered as reference.

Table 2 — Model calibration criteria, ASHRAE Guidelines

14:2014
Data interval Metric Threshold
Monthly NMBE +5%
Cv(RMSE) 15 %

Similar thresholds can be found in other protocols such as
Efficiency Value Organization (EVO) by IPMVP (EVO,
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2003) and Federal Energy Management Program (FEMP)
(FEMP, 2008). This demonstrates that the calibration
criteria employed in this study are well established and
based on empirical methodologies, i.e. the measured energy
consumption and monitored operational conditions.

Case study

The case study consists of 10 public buildings in Melzo,
which is located in the northern Italian province of Milan.
These buildings were picked from a broader group of
facilities that have been examined as part of the research.
The essential building facts are displayed in Table 3,
including the building's name, end use, gross floor area, and
net floor area.

Table 3: Summary data for the case study buildings

Net floor Gross

N.Building name  End-use area volume
m? m?
1 Bocciodromo Sport facilities 610 4510
2 Mensa Catering 1015 5285
3 Centro Anziani  Public spaces 1355 6440
4 Centro Giovani  Public spaces 720 3555
5 Casa Public spaces 535 2810
Associazioni
6 Palestra Sport facilities 435 3245
7 Materna Boves  Education 1400 6680
8 Materna Cervi ~ Education 1540 6635
9 Villa Nogara Public spaces 340 1425
10Municipio Local 3120 12420
authorities

The buildings have been monitored for 3 years with data
acquisition at monthly interval and concentrating the
analysis on natural gas demand for heating service.

Results and discussion

In this Section the results of the regression models’ training
are reported, indicating both numerical results represented
by statistical indicators, referring to the thresholds in Table
2, and visualization of energy signatures for the different
models fitted. The use of both visual and numerical analysis
is aimed at enabling a more intuitive interpretation of
results, which is on the motivations for the research work,
as discussed in the methodology section.

Data-driven analysis from EDA to regression models
type 1 and 2

The energy signature of natural gas consumption per unit of
gross volume is shown in Figure 2 for the various buildings,

which are coloured according to their end use (i.e. grouped).
The goal of providing data per unit of volume is to enable a
comparison that is independent of the building's size and
reliable, given the presence of diverse typologies (built-
forms) with varying heights. This would reduce the "fitness
for purpose" of a representation per unit of net floor area,
considering also the potential for a more in depth analysis
of quantities based on their approximated physical
interpretation (Rasmussen et al., 2020; Tronchin et al.,
2019). In addition, the choice to colour them by end-use is
intended to highlight potential data patterns with a distinct
separation, which is not visible in this instance. A further
classification could be based on the age of the building,
which is not given here for the sake of brevity but was
considered as part of the research.
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Figure 2: Monthly energy signature per unit of gross volume,
measured data

Monthly energy signatures in Figure 2 indicates that linear
regression as a function of outdoor air temperatures may fit
measured data in a satisfactory way and the results of the
model fitting process is shown in Table 4 for model type 1,
using 3 years of monthly data and considering the
thresholds for model acceptability reported in Table 2 in the
methodology section. Building 7 is indicated as non-
calibrated even if it is just slightly outside the calibration
threshold for CV(RMSE), 15%. Buildings 2, 5 and 6 have
much higher CV(RMSE) values indicating a much less
predictable behaviour.

Table 4: Statistical indicators for type 1 model fitting

N. End-use R’ NMBECy(RMSE)Calibrated
% % %

1 Sport facilities 98.61 0.03  9.04 Yes

2 Catering 88.07 -0.06  30.32 No

3 DPublic spaces 97.38 -0.02  10.05 Yes

4 DPublic spaces  98.30 0.09 9.39 Yes
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5 Public spaces 84.79 025 2851 No
6 Sport facilities 83.27 0.39  37.52 No
7 Education 96.66 0.08 15.13 No
8 Education 97.95 0.09  10.04 Yes
9 DPublic spaces 96.14 0.15  13.84 Yes
10 Local authorities97.04 -0.11  11.96 Yes

5 Public spaces 90.09 0.00 23.01 No
6 Sport facilities 88.19 0.41  33.03 No
7 Education 98.05 0.00  11.79 Yes
8 Education 98.78 0.00  10.16 Yes
9 Public spaces 97.70 0.00  13.08 Yes
10 Local authorities98.50 0.00  10.52 Yes

It can be clearly seen that model type 1 after 3 years obtains
values for the indicators NMBE and CV(RMSE) that make
them acceptable as calibrated (according to the thresholds
in Table 2) for 6 buildings out of 10. The model predictions
plotted in Figure 3 show clearly a more regular patterns
compared to measured data.

25

& ® Sport facilities
< @ Catering
E‘ 20 v Public spaces
£ &  Education
3 @ B Local authorities
) A0
5 15 i a :
= (<]
z . 2%
2 ¥ %o
o 101 %g !‘ o
=1 DAY A
8 oa ve® "2
c B L%
= Yo =~' Vg 2
0
= 57 L ] . 4 2
= By by "8
2 =}
= ;‘ [} i*‘
i} v ﬁ
o ! v
0 T T 0
15 20 25 3

0
Qutdoor air temperature [°C]

Figure 3: Monthly energy signature per unit of gross volume,
type 1 model prediction

The analysis process is then continued with model type 2,
with the inclusion of dummy monthly variables to detect
possible seasonal patterns, as explained in the methodology
section. In this case the number of calibrated buildings is 7
out of 10, indicating that some small seasonal variations in
operations are present. The performance of model type 2,
reported in Table 5.

Table 5: Statistical indicators for type 2 model fitting with
additional dummy variables

N. End-use R?> NMBECv(RMSE)Calibrated
% % %

1 Sport facilities 98.96 0.00 8.59 Yes

2 Catering 90.86 0.01  27.18 No

3 Public spaces  98.67 0.00 7.61 Yes

4 Public spaces  98.70 0.00 8.61 Yes

The performance of type 2 model is slightly better than type
1 but while building 7 is now calibrated, buildings 2, 5 and
6 have still CV(RMSE) values much higher than the
calibration threshold (15%), highlighting the fact that the
variations in consumption are not due to a specific seasonal
pattern but rather to a lower predictability of their operation.
Therefore, the root cause of performance anomaly should
be investigated further.
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Figure 4: Monthly energy signature per unit of gross volume,
type 2 model prediction

The predicted energy signatures in Figure 4 for Model type
2 are less regular than those for Model type 1 (which are on
a straight line), but they are still highly recognisable and
less dispersed than the original measured data. If measured
solar radiation data were available, the regression
modelling procedure might have been continued using it as
an additional variable.

Fitting regression model type 1 to simulated data and
partial calibration

In this section, the type 1 regression model is fitted to
dynamic simulation data results. Instead of calibrating the
dynamic simulation directly to measured monthly data,
which would have required the reconstruction of weather
data files with average monthly data matching the ones for
the monitored period (time consuming and not easy to do in
practice), we attempted to fit a linear regression to the
simulated data for a typical standard meteorological year
and then compared the results, in particular slope and base
temperature (when heating demand is equal to zero), to the
ones achieved on measured data. This was due to the fact
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that regression models are usually employed for weather
normalisation of energy demand for heating and cooling, as
discussed in the methodology section. The regression type
1 can be calibrated to dynamic simulation data and
compared to the measured one in terms of slope and
balance-point, which have an approximated physical
interpretation (Rasmussen et al., 2020; Tronchin et al.,
2019), and could therefore give insights in the calibration
process. The Cv(RMSE) is quite smaller compared to the
measured case, lower than 10% for all the buildings, as
shown in Table 6. On simulated data, the simple regression
calibration performed better than on measured data that are
more scattered, demonstrating the difficulties of simulating
a dynamic regime that accurately reflects reality in the
absence of sufficient data.

Table 6. Statistical indicators for type 1 model fitted on
simulated

N. End-use R?> NMBE Cv(RMSE) Calibrated
% % %

1 Sport facilities ~ 98.76 -0.19 9.06 Yes
2 Catering 99.93 -0.01 2.08 Yes
3 Public spaces 99.42 -0.05 5.92 Yes
4 Public spaces 98.10 -0.13 9.61 Yes
5 Public spaces 99.90 -0.02 1.89 Yes
6 Sport facilities  99.80 -0.04 2.65 Yes
7 Education 99.78 -0.06 3.53 Yes
8 Education 99.51 -0.10 4.48 Yes
9 Public spaces 99.70 -0.03 4.61 Yes
10 Local authorities 99.30 -0.06 6.77 Yes
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Figure 5: Monthly energy signature per unit of gross volume,
simulated data on typical meteorological year

The results of the dynamic simulation are displayed in
Figure 5, and it can be observed that they tend to be more
clustered than the measured in Figure 2 but with a similar
dispersion as in Figure 3 and 4 for the regression model type
1 and 2 respectively. In this sense, a simple visual analysis
can help quickly identify the differences between the
regressions conducted on measured and simulated data
(representation as a function of outdoor air temperature is
used in weather normalization).

Energy model predictions comparison

In order to provide an accurate comparison of performance,
the annual heating energy consumption determined by the
various models is projected for a typical meteorological
year and reported in Table 7.

Table 7: Energy consumption per unit of net floor area predicted
for a typical meteorological year

N. End-use Type1l Type2 Simulation

kWh/m? kWh/m?>  kWh/m’

1 Sport facilities  108.8 104.6 117.9

2 Catering 273.5 2769 206.4

3 Publicspaces 1562 155.4 148.4

4 Public spaces 83.8 815 77 4

5 DPublicspaces 2084 202.8 200.5

6 Sport facilities  270.5 274.9 253.8

7 Education 228.8 228.8 2104

8 Education 1045 103.0 89.8

9 Public spaces 158.0 159.0 158.5

10 Local authorities 91.4 88.2 75.4

The results are now given per unit of net floor area, as in
Energy Performance Certificates (which, however, are
based on a standard evaluation technique and are not
calibrated to the specific conditions, like in this case), to
show the wider range of values as opposed to the initial
scaling by gross volume. Apart from building 2, which was
among those that were not calibrated using both model type
1 and 2, it is possible to observe that the variation in
findings is relatively small, less than 20% in all cases
(except for building 2). Based on the existing evidence and
the methods at the state-of-the-art reported in the
methodology, the workflow for calibration can be refined
further, and this will be the focus of future research.

Conclusions

Building energy modelling techniques based on machine
learning have proven effective in a variety of applications.
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However, streamlining the process of calibrating building
energy models, which may be employed for both design
(e.g. deep retrofit) and operational optimization, continues
to be an issue.

In addition, it is essential that machine learning algorithms
retain interpretability, simplicity, and scalability, improve
generalisation capabilities, and are human-comprehensible
(i.e. avoiding the "black box" effect). To enable wider
implementation of these techniques, which could make the
model calibration process more appealing and competitive
in terms of time, effort, and cost, several challenges must be
considered. In this study, monitored data from a cohort of
ten public buildings in Melzo, a municipality in the northern
[talian province of Milan, were analysed using an
interpretable piecewise linear regression modelling
approach. These buildings were selected from a larger range
of facilities studied as part of the investigation.

All the buildings were monitored for three years, and while
the proposed formulations were quite simple to implement,
their results were encouraging and opened the door to
further investigation, particularly in regard to the process of
ML-supported calibration of detailed building performance
simulation. In particular, the visualisation of energy
signatures scaled by gross volume is advantageous for
comprehending the comparability of buildings with
significantly varied attributes and size, as well as the real
distribution of measured data in comparison to that of
simulated data.

To effectively handle the challenges of interpretability (in
approximations of physical concepts) and generalisation,
additional efforts including the classification of
construction data according to archetypes may be
undertaken. Interpretability is crucial due to the need to
promote a "human-in-the-loop" approach when using ML
tools, and the transparent link between regression model
formulation and other analytical techniques at the state-of-
the-art could represent an interesting research area, with
clear advantages over the use of ML and simulation tools in
a "black-box" manner.

In the continuation of this research, we aim to make the
modelling workflow as streamlined as possible and to
employ a combination of numerical and visual tools so that
the process is easily understood by analysts.

Nomenclature
Symbol  Quantity Unit
a regression coefficients, intercept kW/m?
a; regression coefficients, temperature dependence kW/(m*K)
term
b regression coefficients, dummy monthly kW/m?
variable

Cv(RMSE) coefficient of variation of RMSE -

m; monthly dummy variable (binary 0-1) -

NMBE normalized mean bias error (expressed in -

percentage)

qn energy signature heating kW/m?
R’ determination coefficient (expressed in -
percentage)
X dummy variable (binary 0-1) heating -
0, outdoor air temperature °C
&n error term heating kW/m?
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