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Abstract
The building sector is one of the most resource-intensive 
and carbon-intensive sectors in the European Union and 
globally. Reliable building performance data are essential 
for providing the evidence needed in the design of energy 
efficiency interventions and planning of decarbonisation 
strategies for the existing stock. Indeed, the development of 
effective solutions aimed at lowering energy consumption,
emissions and costs in existing buildings is an open 
challenge where actual performance characterisation is 
crucial. The normalisation of measured energy 
consumption with respect to weather and usage patterns
may be performed in a straightforward and scalable manner 
leveraging state-of-the-art approaches that can, in turn, be 
linked to more detailed simulation techniques and used to 
inform both design and operational decisions. In this study, 
10 public buildings in the Italian city of Melzo were 
analysed and modelled to address the above-mentioned 
challenges while streamlining and partially automating the 
process of building stock digitalisation.

Introduction
Data-driven building energy modelling methods that use 
machine-learning techniques have been shown to be useful 
in a variety of applications (Hong et al., 2020), from design 
(Westermann and Evins, 2019) to operation (Manfren et al., 
2020b). As a result, they have the potential to become a key 
tool for accelerating the ongoing process of building stock 
decarbonisation  (Norton et al., 2021) as well as an integral 
part of innovative services and technologies (Manfren et al., 
2021a), where digitalisation is a key component.
Nonetheless it is challenging to introduce data-driven 
methods effectively and reliably in the process of digital 
transformation of built environment. Establishing a robust 
baseline data-driven energy model using measured energy 
consumption (with data collected on a continuous basis) at 
the whole facility or sub-facility/sub-meter level over a 
given period and calibrating (Chong et al., 2021)
simulations of the energy consumption using more detailed 
tools, for example, is a challenging task in and of itself and 
becomes even more daunting if this is not done using a 
simple, interpretable, and reproducible methodology. 
For this reason, in this research, regression models trained 
on measured building energy consumption are used in 
combination with simulated building performance to 
highlight the potential use of (interpretable) data-driven 
methods with more detailed simulation techniques. A
cohort of 10 public buildings located in Melzo, which is a

town in the northern Italian province of Milan, was selected 
as a test. The goal of this research was testing a way to 
streamline and making the energy model calibration process 
more robust, considering the evidence collected in previous 
research and the request from the public administration, 
described in the background and motivation section 
hereafter.

Background and motivation
This article is the result of a multi-year research contract 
between Politecnico di Milano (ABC Department) and the 
Melzo Municipal Administration. The primary objective of 
the study is the digitalisation of a portion of the municipal 
existing building stock, and the study's title is “Informative 
Modeling of the Real Estate Assets for Strategic Planning 
and Programming of Energy Retrofit Interventions and 
Redevelopment of the Built Environment”. Politecnico di 
Milano research group has carried out the following 
activities:

1. Survey and acquisition of available information 
(building geometry, construction technology, building 
services, energy consumption, etc.).

2. Verification of the adequacy of the spaces in 
accordance with current legislation (school 
construction, fire protection, accessibility, state of 
conservation).

3. Creation of a simplified model for calculating energy 
performance that can be used to hypothesise targeted 
retrofit interventions, connected to an economic 
analysis, and validated with dynamic simulations.

4. Creation of simplified BIM models to be used as a 
single digital archive of building information to 
support technical evaluation.

5. Development of an electronic building dossier that 
collects and organises the documentation supplied to 
the BIM model of each building.

The research procedure involved 21 structures, such as 
schools, libraries, town halls, theatres, senior centres, 
bowling alleys, youth centres, sports centres, and gyms, 
among others. The experimental work reported in this 
study, which considers a group of 10 buildings for brevity, 
does not include all the buildings. Regarding point 3, 
different computation methods have been employed over 
the duration of the research, and some of them have been 
abandoned as unsuitable (due to time, effort, and cost 
constraints). One of the goals of the digitalisation process is 
to provide useful analytics regarding buildings' energy 



consumption and costs, so that the administration can 
allocate funds appropriately. The strategy can be 
periodically revised in light of the evolution of the building 
stock. The most recent iteration of the modelling approach 
proposed in relation to point 3 mentioned above requires 
few input data and is structured based on measured 
consumption; the work presented here aims to expand this 
concept with data-driven methods to support and streamline
the calibration process further in its development, in 
relation to the integration of simple baseline data-driven 
energy models to be used in combination with more detailed 
dynamic simulation tools.

Literature review
Providing the administration with the ability to allocate 
financial resources for efficiency measures appropriately is 
among the goals of the project; hence, the concept of 
structuring the modelling tools around measured energy 
performance is crucial. However, due to the dynamic
variability of operational conditions, metered energy 
consumption must be normalised by weather and other 
factors affecting operation (occupancy, periods of 
operation, etc.).
This part of the energy modelling workflow is frequently 
indicated as baseline energy modelling and it is indeed 
crucial also in the case of building retrofit because it 
guarantees the correct estimation of the energy performance 
better retrofit and the related costs (Manfren et al., 2022b).
Multiple techniques can be used for this purpose and have 
been reviewed recently by (Grillone et al., 2020) and 
(Alrobaie and Krarti, 2022). Focusing on data-driven 
methods (Fu et al., 2021) indicated how, over the years, a 
large part of researchers and analysts have continued to 
prefer piecewise linear (change-point, segmented) 
regression models using outdoor air temperature as an 
independent variable and additional variables to subset data 
with respect to operation modes. Further, as shown by 
(Afroz et al., 2021), other techniques may outperform 
piecewise linear regression, but regression is more 
insightful do to its interpretability (ISO/IEC, 2020). This 
issue has been reviewed by (Chen et al., 2023), indicating 
the issue of “ante-hoc” (or intrinsic) and “post-hoc” 
interpretability. Piecewise linear models are intrinsically 
(ante-hoc) interpretable, so they are the preferred approach 
in this case, if they respect the criteria for model
acceptability specified later in this section.
The starting point for the analysis of measured energy 
consumption is the consolidated variable-based degree-
days regression, originally proposed by Kissock et al. in the 
Inverse Modeling Tool (IMT) (Kissock et al., 2003) which 
has been included in standard ASHRAE 14:2014 
(ASHRAE, 2014) and has been steadily evolving with 
different algorithmic formulations, that offer some benefits 
in relation, for example, to the improved scalability 
(temporal and spatial) of the modelling approaches 
(Manfren et al., 2021b), and to the possibility to be used 
across different phases of the building life cycle (Manfren 
et al., 2020b).
At the same time, regression-based formulations could 
enable the approximate physical interpretation of the 

quantities estimated (Rasmussen et al., 2020; Tronchin et 
al., 2019), including components of the building energy 
balance energy balance's components (Vesterberg et al., 
2016a, 2016b). Further, as demonstrated by (Pistore et al., 
2019; Westermann et al., 2020), building energy data can 
also be used effectively in unsupervised learning
workflows, for instance to cluster the behaviour of 
buildings with respect to a set of characteristics, and as a 
function of outdoor air temperature, which is inherent to the 
process of weather normalisation (Fazeli et al., 2016) and 
can be easily interpreted graphically. Normalisation with 
respect to occupancy can also be considered; however, this 
variable is rarely recorded, and higher resolution data 
techniques typically enable automated detection of 
occupied hours based on electricity consumption, such as 
the Time Of Week and Temperature (TOWT) regression 
algorithm (Borgeson, 2013; Mathieu et al., 2011; Price, 
2010). In a more simplistic way, dummy variables can be 
introduced to differentiate between days of the week (daily 
interval models), or months/seasons (monthly interval 
models).

Methodology
Overall, the purpose of this study is to support and simplify 
the process of building energy model calibration (Chong et 
al., 2021) using as a starting point a regression-based 
method which is employed for the normalization of 
measured energy consumption and originates from the 
Inverse Modeling Tool (IMT) (Kissock et al., 2003), now 
included in standard ASHRAE 14:2014 (ASHRAE, 2014).
However, differently from its original implementation, in 
this paper energy signature is used (i.e. energy divided by 
the number of operating hours in the time interval of the 
analysis, corresponding to an average power), as defined in 
ISO 16346 (‘ISO 16346:2013). Further, data are scaled by 
building size (gross volume and net floor area) as indicated 
later in this section. Finally, the methods implemented use 
a piecewise linearization technique (Lin et al., 2013)
employing dummy variables to tackle nonlinearity and 
change points, as shown in related research (Manfren et al., 
2022a). The proposed changes compared to the standard 
approach are aimed at simplifying the process of model 
fitting that can be applied to a heterogeneous stock of 
buildings, while retaining "interpretability" (ISO/IEC, 
2020), i.e. the possibility to be easily understood in human 
terms. Following are further details regarding model 
construction and calibration.

Data-driven building performance analysis & building 
performance simulation
The proposed method is designed for the analysis of 
existing buildings with heterogeneous characteristics and 
end-uses for which specific information that can be used in 
building energy modelling is lacking. In previous phases of 
the study, the usage of detailed and complex simulation 
models was deemed too time-consuming and expensive in 
relation to the goals of the public administration. A 
combination of regression-based data-driven 
methodologies and simplified dynamic simulations has 
been applied in the research to avoid the shortcomings of 
using excessively detailed and unsuitable modelling 



approaches. Recent research on this topic has shown 
promising results in terms of quantification of savings due 
to energy efficiency measures (Grillone et al., 2020; 
Manfren et al., 2020a) and, more generally, the use of 
whole-building statistical energy consumption models (Fu 
et al., 2021) to aid in decision-making processes.
As indicated before, the building stock considered is 
heterogeneous and, for this reason, energy signature data 
are divided by gross volume as shown in research by 
(Tronchin et al., 2016) and (Pistore et al., 2019). In general, 
by scaling the quantities in this way it become easier to 
visualise energy signature across different sets of building 
as will be shown in the results and discussion section. In 
general, this approach is suitable in combination with 
archetypes (representing average statistical buildings) and 
supervised modelling techniques (Pasichnyi et al., 2019) as
well as less “structured” data and unsupervised techniques 
(Westermann et al., 2020) to find clustering, or eventually 
a combination of unsupervised and supervised techniques 
(Lumbreras et al., 2023).
Another fundamental advantage of energy signature 
analysis is its ability to leverage approximated physical 
interpretation of slopes and intercepts in the model 
(Rasmussen et al., 2020), or even approximations of energy 
balance's components (Vesterberg et al., 2016a, 2016b).
Considering both the thermal transmittance of the envelope 
(opaque and transparent) and infiltration/natural ventilation
air-change rates, the interpretation of the regression slope is 
crucial to determining the heat transfer coefficient of the 
building. Even though these building parameters can be 
measured in situ, this cannot be done economically at scale, 
so approximations are used to estimate them from energy 
metered and weather data (Manfren and Nastasi, 2019),
resulting inherently in a higher level of uncertainty 
regarding the estimated quantities.
Following these considerations, regression models used in 
the research are a modified version of the 3-parameter
model described in (ASHRAE, 2014), but the constant term 
(i.e. base load) has been eliminated. The presence of a 
consumption equal to zero in certain months (e.g. summer 
months, since we are modelling metered heating services) 
is handled by using dummy variables (0-1 binary variables) 
used as interaction terms, as shown in previous research 
(Manfren et al., 2022a). The binary variables multiply the 
original variables and enable to “turn on and off” the 
independent variable when necessary. Two types of models 
are tested, type 1 and type 2, whose formulas are reported 
in Table 1.

Table 1: Formulation of regression models

Mode 
type 

Model 
formula  

1  (1) 

2  (2) 

In the first case the independent variable is outdoor air 
temperature, in the second case the independent variables
are outdoor air temperature and an additional dummy 
variable corresponding the month of the year, used 
essentially to detect seasonality in the behaviour (Hyndman 
and Athanasopoulos, 2018), depending on different months 
of the year.
In both cases, the dependent variables are the energy 
signatures calculated from the monitored heating energy 
consumption and divided by building gross volume, as will 
be illustrated later in relation to the case study. The 
calculation of statistical indicators reported later clear 
excluded the time intervals when consumption is equal to 
zero (e.g. summer months) and output solutions are 
constrained to be positive, because small negative values 
can be calculated sometimes near to the change-point, but 
clearly they have no physical meaning.
The diagram in Figure 1 illustrates the two different parts 
of the workflow, the one involving measured data (top) and 
the one involving simulated data (bottom). Regression
(model training) is used to normalize performance and, if 
the model is within the calibration limits reported at the end 
of this Section (model evaluation), can make measured and 
simulated data correctly comparable (model prediction).
The difference between measured and simulated 
(normalized) results can inform the calibration process (as 
a feed-back loop), leveraging basic interpretability (e.g. 
slope and balance-point of the regression model) or more 
detailed physical interpretation of quantities, as indicated 
before.

Figure 1: Modelling workflow diagram

Calibration criteria for models’ acceptability
Table 2 provides the acceptability thresholds for regression 
models calibrated with monthly data, as suggested by 
Measurement and Verification (M&V) protocol ASHRAE 
14:2014 (ASHRAE, 2014), considered as reference. 

Table 2 – Model calibration criteria, ASHRAE Guidelines 
14:2014

Data interval Metric Threshold

Monthly NMBE ±5 %

Cv(RMSE) 15 %

Similar thresholds can be found in other protocols such as
Efficiency Value Organization (EVO) by IPMVP (EVO, 



2003) and Federal Energy Management Program (FEMP) 
(FEMP, 2008). This demonstrates that the calibration 
criteria employed in this study are well established and 
based on empirical methodologies, i.e. the measured energy 
consumption and monitored operational conditions.

Case study
The case study consists of 10 public buildings in Melzo, 
which is located in the northern Italian province of Milan. 
These buildings were picked from a broader group of 
facilities that have been examined as part of the research.
The essential building facts are displayed in Table 3, 
including the building's name, end use, gross floor area, and 
net floor area.

Table 3: Summary data for the case study buildings

N. Building name End-use Net floor 
area 

Gross 
volume 

   m2 m3 

1 Bocciodromo Sport facilities 610 4510 

2 Mensa Catering 1015 5285 

3 Centro Anziani Public spaces 1355 6440 

4 Centro Giovani Public spaces 720 3555 

5 Casa 
Associazioni 

Public spaces 535 2810 

6 Palestra Sport facilities 435 3245 

7 Materna Boves Education 1400 6680 

8 Materna Cervi Education 1540 6635 

9 Villa Nogara Public spaces 340 1425 

10 Municipio Local 
authorities 

3120 12420 

The buildings have been monitored for 3 years with data 
acquisition at monthly interval and concentrating the
analysis on natural gas demand for heating service.

Results and discussion
In this Section the results of the regression models’ training 
are reported, indicating both numerical results represented 
by statistical indicators, referring to the thresholds in Table 
2, and visualization of energy signatures for the different 
models fitted. The use of both visual and numerical analysis 
is aimed at enabling a more intuitive interpretation of 
results, which is on the motivations for the research work, 
as discussed in the methodology section.

Data-driven analysis from EDA to regression models
type 1 and 2
The energy signature of natural gas consumption per unit of 
gross volume is shown in Figure 2 for the various buildings, 

which are coloured according to their end use (i.e. grouped).
The goal of providing data per unit of volume is to enable a 
comparison that is independent of the building's size and 
reliable, given the presence of diverse typologies (built-
forms) with varying heights. This would reduce the "fitness 
for purpose" of a representation per unit of net floor area,
considering also the potential for a more in depth analysis 
of quantities based on their approximated physical 
interpretation (Rasmussen et al., 2020; Tronchin et al., 
2019). In addition, the choice to colour them by end-use is 
intended to highlight potential data patterns with a distinct 
separation, which is not visible in this instance. A further 
classification could be based on the age of the building, 
which is not given here for the sake of brevity but was
considered as part of the research.

Figure 2: Monthly energy signature per unit of gross volume, 
measured data

Monthly energy signatures in Figure 2 indicates that linear 
regression as a function of outdoor air temperatures may fit 
measured data in a satisfactory way and the results of the 
model fitting process is shown in Table 4 for model type 1, 
using 3 years of monthly data and considering the 
thresholds for model acceptability reported in Table 2 in the 
methodology section. Building 7 is indicated as non-
calibrated even if it is just slightly outside the calibration 
threshold for CV(RMSE), 15%. Buildings 2, 5 and 6 have 
much higher CV(RMSE) values indicating a much less 
predictable behaviour.

Table 4: Statistical indicators for type 1 model fitting

N. End-use R2 NMBECv(RMSE)Calibrated

% % %

1 Sport facilities 98.61 0.03 9.04 Yes 

2 Catering 88.07 -0.06 30.32 No 

3 Public spaces 97.38 -0.02 10.05 Yes 

4 Public spaces 98.30 0.09 9.39 Yes 



5 Public spaces 84.79 0.25 28.51 No 

6 Sport facilities 83.27 0.39 37.52 No 

7 Education 96.66 0.08 15.13 No 

8 Education 97.95 0.09 10.04 Yes 

9 Public spaces 96.14 0.15 13.84 Yes 

10 Local authorities 97.04 -0.11 11.96 Yes 

It can be clearly seen that model type 1 after 3 years obtains 
values for the indicators NMBE and CV(RMSE) that make 
them acceptable as calibrated (according to the thresholds 
in Table 2) for 6 buildings out of 10. The model predictions 
plotted in Figure 3 show clearly a more regular patterns 
compared to measured data.

Figure 3: Monthly energy signature per unit of gross volume, 
type 1 model prediction

The analysis process is then continued with model type 2, 
with the inclusion of dummy monthly variables to detect 
possible seasonal patterns, as explained in the methodology 
section. In this case the number of calibrated buildings is 7 
out of 10, indicating that some small seasonal variations in 
operations are present. The performance of model type 2,
reported in Table 5.

Table 5: Statistical indicators for type 2 model fitting with 
additional dummy variables

N. End-use R2 NMBECv(RMSE)Calibrated

% % %

1 Sport facilities 98.96 0.00 8.59 Yes 

2 Catering 90.86 0.01 27.18 No 

3 Public spaces 98.67 0.00 7.61 Yes 

4 Public spaces 98.70 0.00 8.61 Yes 

5 Public spaces 90.09 0.00 23.01 No 

6 Sport facilities 88.19 0.41 33.03 No 

7 Education 98.05 0.00 11.79 Yes 

8 Education 98.78 0.00 10.16 Yes 

9 Public spaces 97.70 0.00 13.08 Yes 

10 Local authorities 98.50 0.00 10.52 Yes 

The performance of type 2 model is slightly better than type 
1 but while building 7 is now calibrated, buildings 2, 5 and 
6 have still CV(RMSE) values much higher than the 
calibration threshold (15%), highlighting the fact that the 
variations in consumption are not due to a specific seasonal 
pattern but rather to a lower predictability of their operation. 
Therefore, the root cause of performance anomaly should 
be investigated further.

Figure 4: Monthly energy signature per unit of gross volume, 
type 2 model prediction

The predicted energy signatures in Figure 4 for Model type 
2 are less regular than those for Model type 1 (which are on 
a straight line), but they are still highly recognisable and 
less dispersed than the original measured data. If measured 
solar radiation data were available, the regression 
modelling procedure might have been continued using it as 
an additional variable.

Fitting regression model type 1 to simulated data and 
partial calibration
In this section, the type 1 regression model is fitted to 
dynamic simulation data results. Instead of calibrating the 
dynamic simulation directly to measured monthly data, 
which would have required the reconstruction of weather 
data files with average monthly data matching the ones for 
the monitored period (time consuming and not easy to do in 
practice), we attempted to fit a linear regression to the 
simulated data for a typical standard meteorological year 
and then compared the results, in particular slope and base 
temperature (when heating demand is equal to zero), to the 
ones achieved on measured data. This was due to the fact 



that regression models are usually employed for weather 
normalisation of energy demand for heating and cooling, as 
discussed in the methodology section. The regression type 
1 can be calibrated to dynamic simulation data and 
compared to the measured one in terms of slope and 
balance-point, which have an approximated physical 
interpretation (Rasmussen et al., 2020; Tronchin et al., 
2019), and could therefore give insights in the calibration 
process. The Cv(RMSE) is quite smaller compared to the 
measured case, lower than 10% for all the buildings, as 
shown in Table 6. On simulated data, the simple regression 
calibration performed better than on measured data that are 
more scattered, demonstrating the difficulties of simulating 
a dynamic regime that accurately reflects reality in the 
absence of sufficient data.

Table 6: Statistical indicators for type 1 model fitted on 
simulated

N. End-use R2 NMBE Cv(RMSE) Calibrated

% % %

1 Sport facilities 98.76 -0.19 9.06 Yes 

2 Catering 99.93 -0.01 2.08 Yes 

3 Public spaces 99.42 -0.05 5.92 Yes 

4 Public spaces 98.10 -0.13 9.61 Yes 

5 Public spaces 99.90 -0.02 1.89 Yes 

6 Sport facilities 99.80 -0.04 2.65 Yes 

7 Education 99.78 -0.06 3.53 Yes 

8 Education 99.51 -0.10 4.48 Yes 

9 Public spaces 99.70 -0.03 4.61 Yes 

10 Local authorities 99.30 -0.06 6.77 Yes 

Figure 5: Monthly energy signature per unit of gross volume, 
simulated data on typical meteorological year

The results of the dynamic simulation are displayed in 
Figure 5, and it can be observed that they tend to be more 
clustered than the measured in Figure 2 but with a similar 
dispersion as in Figure 3 and 4 for the regression model type 
1 and 2 respectively. In this sense, a simple visual analysis 
can help quickly identify the differences between the 
regressions conducted on measured and simulated data 
(representation as a function of outdoor air temperature is 
used in weather normalization).

Energy model predictions comparison
In order to provide an accurate comparison of performance, 
the annual heating energy consumption determined by the 
various models is projected for a typical meteorological 
year and reported in Table 7.

Table 7: Energy consumption per unit of net floor area predicted 
for a typical meteorological year

N. End-use Type 1 Type 2 Simulation

kWh/m2 kWh/m2 kWh/m2

1 Sport facilities 108.8 104.6 117.9 

2 Catering 273.5 276.9 206.4 

3 Public spaces 156.2 155.4 148.4 

4 Public spaces 83.8 81.5 77.4 

5 Public spaces 208.4 202.8 200.5 

6 Sport facilities 270.5 274.9 253.8 

7 Education 228.8 228.8 210.4 

8 Education 104.5 103.0 89.8 

9 Public spaces 158.0 159.0 158.5 

10 Local authorities 91.4 88.2 75.4 

The results are now given per unit of net floor area, as in 
Energy Performance Certificates (which, however, are 
based on a standard evaluation technique and are not 
calibrated to the specific conditions, like in this case), to 
show the wider range of values as opposed to the initial 
scaling by gross volume. Apart from building 2, which was 
among those that were not calibrated using both model type 
1 and 2, it is possible to observe that the variation in 
findings is relatively small, less than 20% in all cases 
(except for building 2). Based on the existing evidence and 
the methods at the state-of-the-art reported in the 
methodology, the workflow for calibration can be refined 
further, and this will be the focus of future research.

Conclusions
Building energy modelling techniques based on machine 
learning have proven effective in a variety of applications. 



However, streamlining the process of calibrating building 
energy models, which may be employed for both design 
(e.g. deep retrofit) and operational optimization, continues 
to be an issue.
In addition, it is essential that machine learning algorithms 
retain interpretability, simplicity, and scalability, improve 
generalisation capabilities, and are human-comprehensible 
(i.e. avoiding the "black box" effect). To enable wider 
implementation of these techniques, which could make the 
model calibration process more appealing and competitive 
in terms of time, effort, and cost, several challenges must be 
considered. In this study, monitored data from a cohort of 
ten public buildings in Melzo, a municipality in the northern 
Italian province of Milan, were analysed using an 
interpretable piecewise linear regression modelling 
approach. These buildings were selected from a larger range 
of facilities studied as part of the investigation.
All the buildings were monitored for three years, and while 
the proposed formulations were quite simple to implement, 
their results were encouraging and opened the door to 
further investigation, particularly in regard to the process of 
ML-supported calibration of detailed building performance 
simulation. In particular, the visualisation of energy 
signatures scaled by gross volume is advantageous for 
comprehending the comparability of buildings with 
significantly varied attributes and size, as well as the real 
distribution of measured data in comparison to that of 
simulated data. 
To effectively handle the challenges of interpretability (in 
approximations of physical concepts) and generalisation, 
additional efforts including the classification of 
construction data according to archetypes may be 
undertaken. Interpretability is crucial due to the need to 
promote a "human-in-the-loop" approach when using ML 
tools, and the transparent link between regression model 
formulation and other analytical techniques at the state-of-
the-art could represent an interesting research area, with 
clear advantages over the use of ML and simulation tools in 
a "black-box" manner.
In the continuation of this research, we aim to make the 
modelling workflow as streamlined as possible and to 
employ a combination of numerical and visual tools so that 
the process is easily understood by analysts.

Nomenclature
Symbol Quantity Unit

a0 regression coefficients, intercept kW/m3

a1 regression coefficients, temperature dependence 
term

kW/(m3K)

bj regression coefficients, dummy monthly 
variable

kW/m3

Cv(RMSE) coefficient of variation of RMSE -

mj monthly dummy variable (binary 0-1) -

NMBE normalized mean bias error (expressed in 
percentage)

-

qh energy signature heating kW/m3

R2 determination coefficient (expressed in 
percentage)

-

Xh dummy variable (binary 0-1) heating -

θe outdoor air temperature ºC

εh error term heating kW/m3
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