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Abstract 
Digital twins (DT) have emerged over the last decade as a potential solution to monitor and 
improve different aspects of built assets. However, little emphasis has been placed so far on the 
iterative development and evolution of DTs. In software engineering, DevOps has established 
itself over the last decade as the leading paradigm to improve software processes. This paper 
proposes a DevOps approach for the development and evolution of DTs for built assets. It focuses 
on three main aspects: (1) Software methodology to support the systematic and iterative 
development and evolution of DTs; (2) Microservice architecture to enable the independent 
development and composition of different aspects of DTs; and (3) DevOps infrastructure to 
support the development, integration, and deployment of DTs. The articulation of the proposed 
approach is based on experience gained in the development of various DTs in the context of built 
assets and other application domains. 
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1 Introduction 
Digital twins (DT) have emerged over the last decade as a potential solution to enable the 
monitoring and improvement of several aspects of built assets across the different stages of their 
lifecycle (Jones et al., 2020). In this paper, we focus on the Operation and Maintenance (O&M) 
phase of build assets. The services offered by existing DTs in the built environment include the 
monitoring and improvement of occupant comfort, energy consumption (Halhoul Merabet et al 
2021), air quality (Chenari et al 2016), and security (Camposano et al 2021),  among many others. 
Their development has required addressing significant challenges related to different aspects of 
the digitalization of built assets, including integration of heterogenous data from different sources 
and device types, data security and secure access to guard against unauthorized access and cyber-
attacks, as well as deployment of software components on heterogeneous execution 
platform/environments composed of IoT devices and cloud. However, little emphasis has been 
placed so far on how to concurrently develop and maintain DTs while increasing their range of 
functionalities in an iterative and evolutionary manner to adapt to ever changing environments, 
and evolving user requirements and objectives. 

DevOps has established itself over the last decade as the leading paradigm to improve 
software processes in software engineering (Forsgren et al 2018). This approach has allowed 
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software organizations to increase their agility to adapt to environments that are constantly 
evolving in order to deliver solutions faster, with higher quality, and that are adaptable to user 
needs. DevOps aims to integrate the development (Dev) and operations (Ops) phases into a 
seamless, end-to-end, continuous process flow and emphasizes continuous integration and 
delivery, and quick feedback loops. It enables continuous improvement through automation and 
monitoring at every stage, from design to deployment, including planning, development, testing, 
integration, release preparation (building/packaging), and monitoring. Its adoption by industry 
leaders such as Amazon, Netflix, Google, and Facebook has led to spectacular progress (Kim et al 
2021).  
 So far,  DTs in the built environment have been mainly developed in the context of research 
projects or for prototypes/Proof of Concepts (PoC). Their development has been typically done 
in an ad hoc manner, following a known and recognized solutions architecture yet not in a 
structured nor through a defined and validated process. This leads to issues with scalability and 
replicability of development approaches and more importantly consistency and predictability of 
resource planning and management of outcomes (Shahzad et al 2022). The problem addressed 
by our research is the lack of systematic approach to support the scalable engineering and 
evolution of DTs. 
 In this paper, we propose an approach based on the best practices of DevOps to support the 
systematic development, deployment, and operation of industrial DTs in the context of built 
assets. Three key areas are presented and discussed in the paper: (1) Software methodology to 
support the systematic and iterative development and evolution of DTs; (2) Microservice 
architecture to enable the independent development and composition of different aspects of DTs; 
and (3) DevOps infrastructure to support the development, integration, and deployment of DTs. 
Regarding the DevOps infrastructure, we focused on three main aspects: the role of Git as a 
version control system to provide a single source of truth and support team collaboration, 
Continuous Integration (CI) to support the development phases, and Continuous Deployment CD 
to support the release and deployment phases. The proposed approach is based on experience 
gained in the development of various DTs in the context of built assets and other application 
domains. 

2 Background 

2.1 Digital Twin of the GRIDD Lab  
A DT is a digital representation of an actual system, also called the Actual Twin (AT), that is 
dynamically and constantly updated with system data, and provides a set of services related to 
the system. Examples of DT services include the monitoring of specific properties, detection of 
issues, simulation, analysis of what-if scenarios, and data analytics to identify correlations 
between different system properties. One of the main advantages of using a DT is that it can 
provide advanced services that could not be provided without the use of a digital representation, 
e.g. simulation, advanced analytics, and AI/ML.  
 The GRIDD1, a research laboratory at ETS, focuses on advancing digital transformation, 
industrialization, collaboration, and sustainability. Committed to driving sustainable change, 
particularly in the construction industry, the GRIDD research group has increasingly focused on 
innovative projects that explore the potential of DTs. The GRIDD Lab is the multi-functional room 
at ETS that is used for both research and teaching activities. It has been the source of multiple DT 
projects that aimed at enhancing various aspects of its functionality and management. These 
projects have allowed experimenting with various technologies and contributed to the definition 
of requirements and challenges for the development of a systematic approach and framework to 
support the engineering of DTs.  
 To illustrate the approach presented in this paper, we use the example of a DT that has been 
developed for the purpose of improving the comfort of the ETS GRIDD Lab. Figure 1 shows three 

 
1 Groupe de Recherche en Intégration et Développement Durable en environnement bâti. The english 
translation would be Research Group in Integration and Sustainable Development in the Built 
Environment. 
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aspects of this DT: a) a 3D virtual view 2 of the GRIDD Lab build based on Building Information 
Model (BIM) data; b) a PMV (Predicted Mean Vote) (Fanger 1977) thermal comfort chart; and c) 
a diagram outlining the high-level software architecture of the DT in relation to the GRIDD Lab 
(AT) and the User Interface that provides access to DT information (or insights).  
 In the current implementation, the GRIDD Lab is equipped with a network of sensors that 
collects data related to different aspects of the lab (CO2, noise level, temperature, and humidity) 
at regular intervals and stores them in the Sensor Data timeseries database of the DT3. Also, a BIM 
model of the lab is available. 

From a software architecture perspective, the DT is composed of a DT Data component and a 
set of components responsible for delivering the DT services. The DT Data component, which can 
also be viewed as a data lake, is responsible for storing the AT data and making them available to 
the different service components. In the example of Figure 1.c, it contains the BIM data of the 
GRIDD Lab and the data provided by the sensors (Sensor Data) deployed in the lab. From a service 
perspective, the DT provides two main services related to the improvement of comfort: a 3D 
Visualization of the lab and its properties related to Thermal Comfort; and a Comfort Analysis 
service. Each service component is composed of a database, one or more models used to produce 
the required service based on the available data, and an API that provides external access to the 
services. The data used by each service is a subset of the data available from the DT Data 
component, e.g. while the DT Data component contains raw sensor data regarding CO2, noise 
level, temperature, and humidity, the Comfort Analysis service only uses temperature, and 
humidity. Similarly, the BIM data used by each of the service are subsets of the complete BIM Data.  

 

      

a) 3D virtual view of the GRIDD Lab  

 

b) PMV thermal comfort chart 

 
 

c) DT software architecture

2.2 Challenges in the development of DT for built assets  
The development of digital twins for built assets involves several layers, each presenting a variety 
of challenges that must be systematically addressed to ensure successful systems that are not 
only scalable but also able to keep pace with changing environments and user requirements, 

 
2 The 3D virtual model was implemented using the Autodesk Revit tool and Autodesk Construction Cloud. 
3 In our current implementation of the DT, this database is deployed in Azure cloud. 

Figure 1. DT to improve occupant comfort of the GRIDD Lab 
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while retaining their reliability and efficiency. In this paper, we focus on the software engineering 
aspects of the development of DTs for build assets . These challenges are indicative of the inherent 
complexities associated with DTs, highlighting the need for expertise beyond traditional 
construction knowledge, in favor of a multidisciplinary approach to software engineering. These 
challenges can be grouped by focusing on data, model and service.  

The data challenges are related to four main dimensions: acquisition, integration, 
transmission and security. During the acquisition, the initial focus is on the accurate and efficient 
collection of data from built assets. The integration of these sensors into existing structures 
requires careful planning in terms of positioning, powering devices, access for maintenance and 
vandalism prevention amongst other considerations. Those devices must establish clear and 
uninterrupted connections with a communication network, complicating integration at the onset, 
and potentially O&M later on. (Dave et al 2018) Those connections must support potentially large 
data throughputs, which can put a strain on existing network infrastructures. A lack of expertise, 
namely related to choosing the right technologies for subsequent phases and meet built asset 
service life expectations can also constitute a challenge. Once the data is properly transmitted, it 
must be stored. Towards seamless integration, data interoperability and data fusion must be 
achieved to ensure that data from a variety of sources (e.g. sensors, systems, external) particularly 
in a heterogeneous systems environment, are successfully used. (Khajavi et al 2019) It also is 
critical that all data related matters must be dealt with security and privacy in mind (Shahzad et 
at 2022). 

The model challenges concern the creation of a dynamic model that can evolve according to 
changes in the physical asset and new user requirements. It involves sophisticated architectural 
considerations to ensure that the model faithfully reflects the built asset. Interoperability issues 
may need to be addressed again here, alongside the development of standardized classifications 
and structures. (Shahzad et al 2022) 

Closer to users, service challenges involve defining services and their requirements. 
Common challenges revolve around poorly defined user requirements, leading to wasted efforts 
and delays. Services often suffer from a lack of foresight relating to scalability, maintenance and 
resource management, resulting in inefficient and inflexible systems. 

Finally, beyond those known challenges in the built asset community, many obstacles 
typically met in software engineering have yet to surface.  

2.3 DevOps  
Over the last decade, DevOps has emerged as the prominent approach to increase agility, 
productivity, and system quality in the software industry. It has resulted in spectacular progress 
regarding key aspects of software development and operations (Forsgren et al 2018). (Kim et al 
2021) defines the three ways of DevOps: 1- Flow, 2- Feedback and 3- Continual Learning and 
Experimentation. DevOps is based on the principle of continuous improvement and focuses on 
optimizing the flow of activities involved in the creation of end user value, from idea to deployed 
functionality, and on providing fast and continuous feedback throughout the entire process. It 
extends the Lean and software agile methodologies by integrating aspects like quality assurance, 
continuous integration and deployment, and system operations together with development to 
enable more frequent and reliable releases. It aims to use automation as much as possible to 
improve productivity, predictability and quality. 
Figure 2 illustrates the infinite loop that describes the DevOps workflow that is composed of the 
following phases: Plan, Code, Build, Test, Release, Deploy, Operate, and Monitor. These phases can 
be grouped in four main process parts: Planning,  which relates to the Plan phase; Dev, which 
includes the Code, Build, and Test phases; Release & Deployment, which includes the Release and 
Deploy phases; and Operation & Monitoring, which includes the Operate and Monitor phases.  

The last part of the DevOps workflow, Operation & Monitoring, aims at ensuring the proper 
operation of the DT and the real-time monitoring of different aspects of its execution to enable 
early detection of issues (before they become a problem) and the identification of aspects that 
need to be improved. This part of the process rely on DT telemetry to collect the required data. It 
is important to mention that the Monitor phase provides a main input into the Plan phase and 
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allows closing the DevOps (infinite) loop that supports continuous improvement. Because of the 
space limitation of the paper, the technical aspects related to the Operate and Monitor phases, 
including their automation and tool support, will not be further discussed. 

 

 

2.4 Related work 
The development of digital twins has reached an important milestone, evolving from simple 3D 
models to integrated systems that harness real-time data, predictive analytics and machine 
learning (Li et al 2024). However, studies in built asset are still emerging and the body of work 
remains sparse. BIM plays a key role in this progression, improving the accuracy and efficiency of 
DT applications, marking a shift from traditional practices to advanced, data-driven 
methodologies. This underscores the importance of the growing development of long-term DTs 
in this field. Also, with data often at the heart of DT development challenges in the built 
environment, the lack of structure/framework around it is readily apparent. We have gathered 
here the most relevant studies to this paper.  

The study on the development of a DT at the University of Cambridge (UK) describes a 
dynamic DT at the building level that integrates various heterogeneous data sources, such as a 
multi-layered BIM and IoT-based sensors. The system is built on a comprehensive system 
architecture aimed at “[…] supporting intelligent asset management, providing effective O&M 
management, and further bridge the gap between human relationships with buildings/cities via 
more intelligent, visual and sustainable channels.” (Qiuchen Lu et al 2019). Despite the system 
approach, a framework designed to allow continuous updating and improvement to support long-
term development is required.  

(Lo pez-Pen a et al 2020) worked on “fast and continuous monitoring feedback of system 
availability” activity (F&CF availability). This leverages the DevOps contribution to a component 
of DTs in IoT system from an availability standpoint. This approach materializes through the 
deployment of distributed components monitoring, which provides the DevOps team with the 
flexibility to configure specific metrics and indicators at runtime, thereby enabling customized, 
on-demand monitoring.  

(Chamari et al 2023) proposes a service-oriented architecture (SOA) for data-driven 
applications. It focuses on component modularity and reusability as well as real-time integration 
of heterogeneous data sources. While this study does not explicitly speak to the evolution of DT 
over time, the SOA lays the foundation for a systematic evolution of DT. 

Regarding DevOps, some papers have discussed the use of its principles for the development, 
deployment, and operations of DTs (Hugues et al 2020, Ugarte Querejeta et al 2020,  and Dobaj et 
al 2022) and Cyber-Physical Systems (CPS) (Combemale & Wimmer 2020, Mertens & Denil 2022),  
but, to the best of our knowledge, there exist no DevOps approach or framework to support the 
systematic development and evolution of DTs. 
 In summary, the lack of structure in DT development for built assets appears in the various 
studies on the subject. This would be consistent with the experimental nature of the studies. 
Furthermore, the studies mostly concentrate on the improvements on single aspects of a DT. A 
broader and more systematic integration of DevOps aims at addressing the identified challenges 
and providing support for the systematic and scalable development and evolution DTs. 

Figure 2. DevOps workflow 
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3 DevOps approach for DT 
From an engineering perspective, DTs are generally considered as complex distributed software 
systems. As such, they need to be designed, developed, tested, deployed, and operated as any 
complex software system.  For this purpose, the development of DTs needs to be well-planned 
and conducted in an iterative manner to support its systematic evolution and continuous 
improvement. From a functional perspective, the number of aspects addressed by a DT and the 
set services it provides need to be incrementally developed.  

In this section, we describe a DevOps approach that can be used to support the systematic 
development and evolution of DTs in the context of build assets. We focus on three aspects: 
software methodology to support the iterative development of DTs; 2- Microservice architecture 
to enable the independent development and composition of different aspects of DTs; and 3- 
DevOps infrastructure to automate the continuous integration and deployment (CI/CD) of DTs. 

3.1 Software Methodology for DT 
From a software methodology perspective, the overall development process needs to be 
structured to support the systematic and iterative development and evolution of DTs so that they 
can be adapted to continuously changing environments, requirements, and needs. Throughout 
their lifecycle, besides the changes made to correct defects or refactor part of the software to 
reduce the technical debt, a DT may need to be modified for three main reasons:  

• Modifications made to the AT or its environment that need to be reflected in the DT, e.g. 
structural properties of the AT have been modified, new sensors have been added or a 
new source of external data has become available. 

• Modifications made to the DT to improve the precision of one of its existing services, e.g. 
a DT can be modified to take advantage of a new source of data or to introduce of a new 
type of model to improve its current management of a specific aspect (e.g. Thermal 
Comfort) 

• Increase the set of services provided by the DT, e.g. the scope of a DT that was initially 
developed to improve comfort in a building can be modified to include a new aspect and 
services like the reduction of energy consumption, the improvement of air quality, or the 
management of assets. 

For this purpose, each iteration needs to be carefully planned in the Plan phase of the DevOps 
workflow.  To support the management of the software development, DevOps promotes the use 
of agile principles like the use of Kanban boards (or other types of sprint planning boards). Among 
other things, the planning of an iteration requires the determination of the percentage of 
resources that will be allocated to the development of new features/services, the improvement 
of existing ones, the correction of software defects, and the reduction of the technical debt 
(Kersten 2018). In this phase, the information collected by the DT telemetry in the Monitor phase 
plays a key role.  
 In the case of the GRIDD Lab, we started by focusing on the Thermal Comfort aspect, as 
illustrated in Figure 1. We first developed the 3D Visualization service and then added a Comfort 
Analysis service using on a PMV model. Each service was independently developed and then 
integrated in the DT. In a second phase, we increased the scope of the DT by adding an Asset 
Management aspect, which includes two main services: Equipment Inventory and Room 
Configuration. Figure 3 provides a high-level architecture diagram of the GRIDD Lab DT software 
architecture resulting from this new aspect. As the DT continues to evolve, additional aspects such 
as energy consumption management and air quality improvement will be iteratively 
incorporated. 

3.2 DT Architecture - Microservices  
DevOps promotes the use of a microservice architecture to manage the software complexity of 
DTs. Some existing DTs, while complex, are structured with most of the code running on one 
machine, gathering and processing data, akin to monolithic style architecture. This is easier to 
understand but challenging to scale when adding new features. Some others employ distributed 
systems that use cloud services with some degree of decoupling. While the latter are closer to the 



Aissat et al. 2024 A DevOps Approach for Built Assets’ Digital Twin 

Proc. of the CIB W78 Conference 2024, October 1st-3rd 2024, Marrakesh, Morocco 

proposed architecture, this section examines what they are and how they could positively impact 
DTs in built assets using GRIDD’s Lab example. 

 

 

First, independent deployability is considered. This principle asserts that a microservice can 
be changed and deployed without affecting other services. Achieving this requires ensuring that 
microservices are loosely coupled yet maintain stable interfaces, enabling flexibility, faster 
release cycles, and simplified deployments across diverse platforms and environments. For 
instance, in Figure 3, Thermal Comfort aspect could be updated to improve performances without 
impacting Asset Management services. The User Interface would remain unimpacted if the API 
stays the same. This helps to address model and service challenges. 
 Second, models are developed around business domains to decompose the DT system into a 
set of components based on real-world domains they operate in. Each DT is associated with a 
domain of expertise, one team and one microservice. Splitting a larger DT into smaller 
components aligns with the Conway Law as domain-specific teams, such as those working on 
equipment inventory, are unlikely to collaborate with unrelated teams, such as those focused on 
PMV. Those are two separate domains, heterogenous both in model and data, thus likely to 
communicate very differently. In our example, it is likely that any aspect added to the GRIDD Lab 
DT will be by a different research team, following its own objectives and methodologies. Drawing 
clear boundaries helps organize around specific purposes and goals of a DT by keeping internal 
cohesion high and external coupling low. This helps to address some data and service challenges. 

 Third, state ownership is enforced. Each microservice must be able to independently manage 
its data, maintain its state and control what information is shared, exposing only the information 
that needs being seen. For instance, a Room Configuration component would store the current 
state of configuration, allowing it to check against a planned configuration and create work orders 
to change them. Another component or service could need this information, but would have to 
request it through the API. As depicted in Figure 3, this means having its own data to facilitate 
transformation of data while ensuring persistence. This abstraction typically spans several 
containers (e.g. Docker), each encapsulating everything needed to run a microservice in any 

Figure 3. Software architecture of the GRIDD Lab DT after the addition of Asset Management  
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environment, regardless of the programming language, thereby standardizing deployment and 
simplifying the management of various service instances. This helps to address some data 
challenges. 
 Finally, by fragmenting a DT into manageable and autonomous services, microservices 
architecture offers a modularity and flexibility that promotes simpler maintenance, greater 
scalability and continuous innovation, while responding more effectively to the changing needs 
of complex environments. DevOps processes and their associated tools thrive in decoupled 
architectures. Beyond the benefits brought by independent deployability, business domain 
decomposition, and state ownership, DevOps provides a natural solution to address challenges of 
DT development in build assets.  

3.3 DevOps infrastructure to support the Dev and Release & Deployment phases of DT 
A main contribution of the DevOps approach comes from the automation of different aspects of 
the DT software process. The goal is to streamline and improve the efficiency of the overall 
software process by automating manual repetitive tasks using different types of software 
technologies and tools4. The elimination of these repetitive tasks, which from a Lean perspective 
constitutes a waste, allows development teams to focus on value-added activities such as 
developing new features, improving existing ones, or correcting software defects. The automation 
of these manual tasks also has the advantage of reducing human error and increasing the 
consistency of tasks performed, resulting in a significant improvement in the quality of the final 
product. This not only facilitates the ongoing evolution of the DT, but also enhances its 
maintainability. 

In this paper, we concentrate on three main aspects of DevOps process that are used to reap 
the full benefits using existing technologies: 

• Version control using Git to support the overall DevOps process 
• Continuous Integration (CI) to automate the Dev phases 
• Continuous Deployment (CD) to automate the Release & Deployment phases  
 

Figure 4 illustrates CI and CD in the context of the overall DevOps process lifecycle.  
 

            
 

Version Control 
In DevOps, Git5 is used as a version control system to support efficient team collaboration and 
provide a single source of truth for all project artifacts, including code, test cases, configuration 
files, and documentation. It provides the foundation to support the overall DevOps process. It 
enables precise tracking of every modification made to a file, whether additions or deletions, and 
offers the flexibility to revert to previous states and compare file changes over time. It also 
provides support for file diff/merge, which allows teams to collaborate more efficiently on 
development projects.  

Git is particularly relevant for offering robust branching models such as Gitflow, which 
organizes projects into two primary branches: Development and Master. This model streamlines 
workflows by allowing developers to work in dedicated development branches, often referred to 
as feature branches. Such a structured approach not only clarifies the development process, but 

 
4 A broad range of technologies and tools (open source and proprietary commercial) have been developed 
over the last two decades to support the different aspects of all phases of the DevOps process. 
5 Git: https://git-scm.com/ 

Figure 4. DevOps workflow – CI/CD phases 
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also integrates seamlessly into continuous integration and deployment (CI/CD) pipelines, 
supporting the iterative nature of modern software development. 

Furthermore, Git platforms provide a set of basic functionalities to support different aspects 
of the DevOps process, including mechanisms for peer-review6 and for the development of CI/CD 
pipelines7. These platforms also facilitate the creation and management of tasks/issues, 
incorporating different project management tools like Kanban boards to ensure a smooth, 
organized workflow across all stages.  

In our project, the GitHub8 platform is used to support our DevOps approach and GitHub 
Actions are used to implement all CI/CD pipelines. This solid infrastructure enables a smooth and 
secure transition of code from development to production. By properly exploiting Git, teams can 
maximize the benefits of CI/CD pipelines, taking full advantage of available tools and 
technologies. 
 

Continuous Integration (CI)  
In the Dev phases, different tools and technologies can be used to support and automate various 
aspects of the software development process. In particular, the CI pipeline automates the 
execution of the different steps involved in the Code, Build, and Test phases. This automation 
facilitates the seamless integration of new code into a shared Git repository (on Master on Main 
branch), where it is continuously tested to identify errors as early as possible to ensure that the 
latest software version is always in a state that is ready to be released to production.  
Figure 5 outlines how each phase of the CI pipeline—Code, Build, and Test—is meticulously 
thought out to improve the efficiency across various activities, to support and automate various 
aspects of the software development process.  

 

 

     
 

Code: In this phase, software developers perform various tasks associated with the 
development of new functionalities, improvement of existing ones, or fixing of issues. Different 
tools9 are used to support the coding tasks, including code editing (using programming Integrated 
Development Environments (IDE)), compilation, static code analysis, and unit tests. In this phase, 
the work is done on a local Git development branch, which allows developers to work 
independently from each other. The phase concludes with a code peer-review.  

Build: The Build phase is triggered once the new code has been accepted by the reviewer. It 
starts with the integration (merge) of the new code on the Git Master branch. During this step, Git 
ensures that the code can be integrated and that no conflict arise with the existing code. Once the 
new code is integrated, the unit tests are executed on the Master branch and a new version of the 
microservices (affected by the code change) is build (e.g. as a Docker container). Finally, the  new 
candidate version of the software is packaged and made available for testing.  

Test: As soon as a new candidate version is made available (by the Build phase), the different 
integration and system test phases are automatically executed. The testing is conducted in a pre-
production environment. The goal is to identify issues before the new version of the software is 
deployed in the pro-duction environment. In the context of DT for build assets, this typically 

 
6 For example, Pull Requests in GitHub and Bitbucket, and Merge Requests in GitLab. 
7 For example, GitHub Actions and GitLab CI. 
8 GitHub: https://github.com/ 
9 Different programming languages are used for different components, including C++, Java, and Python. 
ESlint (eslint.org) and SonaQube (www.sonarsource.com) are the main tools used for static code analysis. 

Figure 5. Typical CI pipeline tasks 
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includes testing on specific devices and environments (e.g. IoT device or cloud environment) 
depending on the component (microservice).  

In our projects, we use both Azure and AWS for different cloud services (e.g. Azure for hosting 
the main database that stores the data collected from the different sensors deployed in the room 
and AWS for the deployment of different microservices), and a combination of Arduino, 
Raspberry Pi, and Jetson devices for the deployment of different data acquisition components and 
edge-microservices that perform local treatment of data. Although the automation of deployment 
on cloud environments is nowadays common, the deployment on IoT devices is still often 
performed manually. As a result, a deployment pipeline needs to be developed for each of the 
environments on which components/containers are deployed, this includes Azure, AWS, Arduino, 
Raspberry Pi, and Jetson devices. 
 

Continuous Deployment (CD) 
In the Release & Deployment phases, CD pipelines automate the deployment of verified code in 
the production environment, while maintaining the stability of the DT system, thus ensuring rapid 
and secure updates. In a fully automated DevOps process, CD pipelines can be triggered whenever 
the product manager is ready to release a new version of the DT software in production. By 
effectively implementing CI pipelines and leveraging a microservices architecture, the transition 
to CD occurs naturally. The CI ensures a reliable source of code changes, setting the stages for 
these changes to be automatically deployed anytime through a streamlined process. This process 
uses Docker containers to provide an isolated and consistent environment for each component, 
making it easier to deploy, scale, and maintain the application across different operational 
environments—from development to production. CD pipelines enable a seamless transition from 
development to production, crucial in heterogeneous environments where both cloud 
infrastructure and edge devices, such as IoT devices, are used. This deployment flexibility is 
essential for maintaining the real-time operational integrity and scalability of DT systems, 
particularly in complex built asset management scenarios. 

4 Conclusion 
This paper proposes a DevOps approach to support the systematic development and evolution of 
DTs for built assets. The proposed approach is described in terms of (1) a software methodology 
to support the systematic and iterative development of DTs, (2) microservice architecture to 
enable the independent development and composition of different aspects of DTs, (3) DevOps 
infrastructure to support the development, integration, and deployment of DTs. Regarding the 
DevOps infrastructure, we focused on three main aspects: version control using Git to provide a 
single source of truth and support team collaboration, Continuous Integration (CI) to support the 
Dev phases, and Continuous Deployment CD to support the Release & Deployment phases.  

The paper illustrates the approach using the example of the GRIDD Lab, effectively 
showcasing how DevOps can support iterative development, and enhance the capability of DTs to 
provide valuable insights and services such as comfort management and energy efficiency.  

Besides providing a solid foundation for the development and operations of scalable DTs, the 
use of DevOps also allows addressing several of the main challenges associated with the 
development of DTs for build assets as described in section 2.2. 
 In conclusion, the proposed DevOps approach marks a significant shift towards more 
adaptive DT systems in the built environment. It not only fosters a culture of continuous 
improvement and collaboration but also sets a foundation for future research and development 
in this area. The development of a DevOps framework for DT to support the approach proposed 
in this paper is currently underway and will be published and released as open source in the 
coming months. The proposed approach continues to evolve as we work on the ongoing evolution 
of the GRIDD Lab DT and the development of new DTs.   
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