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Abstract

The Industry Foundation Classes (IFC) represent the cornerstone of Building Informa-
tion Modelling (BIM), serving as a universal and standardized schema for information
exchange in the construction and building industry. The extensive range of IFC classes
poses a risk of element misclassification. Wrongly classified elements undermine data
reliability, analytical processes, estimations and quantity take-offs. The study addresses
the issue by introducing convolutional neural networks (CNN) trained to recognize in-
dividual elements based on their geometry. Comparing machine-identified entities with
those labelled by a human allows the detection of potential mistakes. The model effi-
ciency is substantiated through rigorous testing on a large dataset of categorized IFC
elements extracted from hundreds of BIM models. The accuracy, performance and limi-
tations are analysed and discussed. The development of this CNN-based approach marks
a stride towards more efficient BIM data validation and, ultimately, data-driven design
and construction processes.

1.Introduction

The Industry Foundation Classes (IFC) standard plays a key role in Building Information
Modeling (BIM). It facilitates collaboration, curating, and exchanging data describing the
built environment.

Central to the IFC are classes, called entities, that standardise how elements should be
defined. Usually, the authoring software assigns a class based on category mapping, or
user assigns it manually. The vast number of classes, coupled with a diverse array of
software solutions in the market, often results in the wrong classification of elements
(Holzer, 2011). In some cases, models solely consist of generic (proxy) elements, lacking
any particular class, making them unusable in practice.

Recognizing these challenges, our research aims to investigate the feasibility of auto-
matic IFC class recognition purely based on geometrical features. This way, the soft-
ware could spot elements with a high likelihood of being misclassified, notifying the
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user. The intention is not to replace manual categorization, as it is often the expert
decision whether a certain geometry should represent one class or another.

To achieve our goals, we trained an artificial intelligence (AI) model based on a collection
of thousands of properly labelled IFC objects. This training set is designed to represent
a broad spectrum of IFC categories, enabling the Al to effectively learn and predict the
classification of new, unlabelled geometrical objects.

Al-assisted BIM checking might help find misclassified objects, increasing the overall
BIM quality. This could lead to significant improvements in efficiency and accuracy in
building design, reducing the overhead associated with manual data verification and
increasing the reliability of the BIM models used across various stages of construction.

2.Literature Review

The IFC addresses interoperability challenges in the architecture, engineering, and con-
struction (AEC) industry. It provides a standardized data schema supporting data ex-
change across diverse software platforms, enhancing collaborative efforts and stream-
lining project workflows. However, the complexity of IFC schema and the manual effort
required in classifying BIM elements often leads to inconsistencies and errors, undermin-
ing the potential of BIM systems to achieve accurate data management and application
(Sobhkhiz and El-Diraby, 2023).

Recent advancements in machine learning introduced novel approaches to automating
the classification of IFC entities. The study from Krijnen and Tamke demonstrates the
potential of Al for assessing implicit knowledge in BIM data (Krijnen and Tamke, 2015).
It employs supervised and unsupervised machine learning methods to search for mis-
classified elements in IFC models. The research simplified the geometrical features into
three aspects: surface area, volume, and the radius of gyration (gyradius). Another paper
emphasizes the potential of deep learning in automatically generating semantic BIM data
(Rogage and Doukari, 2024). The research highlights the application of convolutional
deep belief networks in recognizing 3D objects, thereby automating the enrichment
of semantic data, improving interoperability, and reducing manual data entry errors.
Koo et al. delve into geometric deep learning models for , which classifying infrastruc-
ture BIM elements based on their geometric features, such as Multi-View Convolutional
Neural Networks (MVCNN) (Koo et al., 2021) and PointNet (originating from Qi et al.,
2016). These models have shown substantial promise, with both MVCNN and PointNet
demonstrating high performance in capturing subtle geometric differences essential for
accurate IFC mapping. This study underscores the importance of sophisticated model
architectures in handling the complex geometries typical of BIM elements and ensuring
their correct classification based on IFC standard.

Emunds et al. (Emunds et al., 2022) introduce SpaRSE-BIM, a model that employs sparse
convolutional neural networks to classify IFC-based geometry while offering semantic
enrichment effectively. This approach not only aids in maintaining data consistency but
also optimizes processing speeds, making it viable for real-time applications in complex
BIM environments.

Despite these technological advances, several challenges persist. The work of Sobhkhiz
and El-Diraby on the dynamic integration of unstructured data with BIM through ma-
chine learning and concept networks highlights the ongoing need to handle unstruc-
tured data efficiently (Sobhkhiz and El-Diraby, 2023). Their no-model approach using
graph theory and NLP to classify documents into IFC classes represents a pivotal shift
towards more adaptable and robust BIM data management systems.

Moreover, Wu and Zhang’s (Wu and Zhang, 2018) exploration of geometric theorems to
automate BIM object classification and the subsequent use of support vector machines
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by Koo et al. (Koo et al., 2019) for the same purpose exemplify the breadth of com-
putational strategies being employed to refine the process of IFC categorization. These
methodologies illustrate the diverse approaches researchers take to overcome the intrin-
sic challenges posed by construction projects’ varied and complex nature.

The integration of Al and BIM, especially for IFC classification, is expected to evolve
further, with continuous improvements in model accuracy, computational efficiency, and
adaptability to new types of BIM data.

3.Methodology

3.1.Research approach

This proof-of-concept study focuses on developing an algorithm that recognizes building
elements by analyzing their geometric features. The study began with a literature re-
view and examination of the problem domain, essential for establishing the algorithm’s
requirements and constraints. This section details the data-gathering process, the model
architecture and training of neural networks, and the integration of these components
into a functional application.

3.2. Algorithm design

Based on the identified requirements and engineering practices we developed a concep-
tual framework for category validation. The workflow begins with extracting a single
element from the IFC model, as illustrated in Figure 1. Then, the IFC element’s geometry
is converted to a point cloud with a fixed number of points.

Next, we pass this set of points to the neural network which predicts the probability
of the element’s IFC category based on its geometry. If the category with the highest
probability matches the element’s assigned category, the algorithm proceeds to the next
element. A review request is sent to the user if there is a discrepancy between the pre-
dicted and assigned categories.
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Figure 1: The workflow

The proposed framework relies significantly on the Al model, with its accuracy and relia-
bility hinging on the diversity of datasets used during training. However, it is important
to acknowledge that the model can never guarantee 100% accuracy in its predictions.
Consequently, the user’s role remains essential in the workflow, serving as the final
decision-maker who approves or rejects the suggestions provided by the system.

3.3.Data Collection

To train the model, we need vast input data containing elements with geometry and ad-
equate class label - IFC entity. We collected 245 IFC models from various public repos-
itories, primarily buildingSMART International, 2021; OSArch Community, 2021; The
University of Auckland, 2021. From those, using a bespoke script, we extracted 884’008
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instances of elements that contained unique geometry. The set has representatives of
84 IFC classes, with the predominant being structural framing (IfcBeam, IfcColumn, and
IfcMember), reinforcement (IfcReinforcingBar), pipes and ducts (IfcFlowSegment). Fig-
ure 2 presents the count of elements per each class. Each instance was then saved into
an OB] file for easier processing, together with metadata including the label, source file
name, location in the model, identification, and matrix of rotation. The resultant dataset
was published as supplementary material on Zenodo repository (Tomczak et al., 2024).
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Figure 2: Representation of each IFC class in the dataset (logarithmic scale)

From the obtained dataset, we picked a subset of categories with a substantial represen-
tation of more than 1200 samples. Additionally, to ensure consistency and clarity of the
analysis, we removed the undefined proxies (IfcBuildingElementProxy) and consolidated
similar or hereditary categories (IfcStair and IfcStairFlight, IfcWall and IfcWallStandard-
Case, IfcFurniture, and IfcFurnishingElement). This process yielded a comprehensive
and structured dataset of 23 suitable for the rigorous investigation of geometric patterns.
For efficiency of the processing, we then extracted the metadata from OB]J to separate
JSON files.

3.4.Data preprocessing

All the elements in the dataset were randomly distributed in their corresponding cat-
egories into three datasets: training, validation, and testing. 80% of the elements were
used for training the neural network, 10% was dedicated to validating the progress of the
neural network training, and the final 10% to test the post-training benchmark. In the
next step, a mesh representation (OBJ) was converted to a point cloud (XYZ), by cast-
ing 2048 points into each element’s surface (this number matches the PointNet model’s
training specifications) using the Trimesh Python library (Dawson-Haggerty, 2022). This
way, all the objects, regardless of their shape complexity, are expressed in an equal num-
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ber of points, suitable for Al applications. To reduce the influence of the scale factor, we
normalised the dataset to a range from 0 to 1 unit while maintaining the proportion
between dimensions. Such preparation is then used as input for the CNN model.

3.5.Al model architecture

Based on the literature review, the PointNet architecture of CNN was selected (Qi et
al., 2016). It employs a series of transformation networks that help align the points
into a canonical or standard orientation before feature extraction occurs, improving the
model’s robustness and accuracy. This is crucial for tasks like classification and segmen-
tation, where the spatial arrangement of points can significantly impact performance.
Furthermore, PointNet can handle varying sizes of point sets by independently using a
shared MLP (multi-layer perceptron) on each point, enabling it to learn local and global
structures effectively. To train the model, 512 epochs (steps) were conducted with a
constant learning rate (Ir) equal to 0.001.

The code was written in Python mainly using the PyTorch library (The Linux Founda-
tion, 2024). The model was trained using Google Colab, working on the Ubuntu 22.04
system with 83.5 GB of RAM. Additionally, to accelerate the training the graphics pro-
cessing unit (GPU) Nvidia A100 (40Gb) was used.

4.Results

The model took five and a half hours to train, but thanks to this, the actual class recog-
nition on pretrained model is a matter of seconds.

The result of the Al model training is the model with the highest accuracy of 61.7%. The
distribution of the correct and incorrect predictions based on the IFC class is shown in
the figure 3.
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Figure 3: Training result - correct and incorrect predictions per IFC category

The classes characterized by the lowest accuracy rates include fluid transport: IfcFlowSeg-
ment, IfcPipeSegment, and IfcDuctSegment, which demonstrated accuracies of 16.7%,
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20.0%, and 46.7%, respectively. A related second category features fittings, which exhibit
a range of accuracies between 45.8% and 57.5%.

Conversely, the categories featuring higher accuracies are IfcReinforcementBar, IfcFire-
SuppressionTerminal, IfcFlowController, and IfcDistributionControlElement, with accu-
racies of 84.2%, 89.2%, 88.3%, and 80.8% respectively. These results underscore a signifi-
cant variation in model performance across different classes, reflecting the potential for
targeted improvements in class-specific training approaches.

5.Discussion

The training resulted in an average model accuracy of approximately 61,7%. This accu-
racy is significantly lower than that documented in the original PointNet concept (Qi
et al., 2016), necessitating caution when interpreting the results. Still, it can warn in
most cases of element misclassification, increasing overall efficiency. It is important to
remember that in BIM, the geometry is only a simplified representation that conveys just
a part of the information. Other important aspects, such as classification and properties,
can determine the category.

Despite utilizing a balanced, and diverse dataset, several factors may have caused low ac-
curacy observed in our Al model’s performance. A primary concern is the lack of distinct
differences between categories of geometry, particularly evident in the low accuracy
rates for IfcFlowSegment and its derivative categories, IfcDuctSegment and IfcPipeSeg-
ment. The round shapes common to both ducts and pipes create significant confusion
for the model as it struggles to differentiate between these similar geometries.

To address the required classification precision, it’s evident from our observations that
distinguishing between elements such as a pipe and a duct may not be as critical as iden-
tifying the overall category of a flow segment. A practical approach to enhancing model
performance would be to consolidate the categories of IfcPipeSegment and IfcDuctSeg-
ment into a single, broader category labelled IfcFlowSegment. Additionally, considering
the similar challenges with IfcFlowFitting, merging this category could simplify the clas-
sification task and potentially elevate the model’s accuracy.

Moreover, architectural models’ complexity often introduces additional challenges. Vari-
ations in geometric shapes, sizes, and contextual positioning can further complicate the
model’s ability to classify elements accurately. Enhancing the training dataset with
more specific features or employing advanced augmentation techniques could poten-
tially address some of these challenges and lead to better model performance. Another
alternative is the usage of MVCNN, which might provide better accuracy by leverag-
ing multiple views of an object to capture a more comprehensive range of geometric
details, potentially improving the classification of complex architectural elements. Nev-
ertheless, current approaches generally overlook the potential benefit of integrating the
spatial context of elements within the construction model into the classification process.
While geometry plays a crucial role, the placement of an element in relation to others
can be equally important for accurate classification. Addressing this aspect could lead
to further improvements in model performance, making it more robust in handling the
intricacies of AEC designs.

Alternatively, this problem might be addressed by splitting the classes with a more
domain-focused approach, limiting the number of classes. However, such an approach
would require additional input from users to classify model characteristics into domains
such as Architecture, Structure, Ventilation, or Infrastructure. This user-driven classifi-
cation could help the model by providing contextual information that it might otherwise
struggle to infer from geometric data alone.

Additionally, manually curating the dataset to exclude unrecognizable elements could
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further enhance the model’s accuracy. With further refinement and user collaboration,
the model can become a more reliable tool in reducing manual work and enhancing the
efficiency of architectural and structural design processes.

6.Conclusion and Future Work

This study successfully applied a machine learning model for automatic IFC class recog-
nition and proposed the framework for automated validation of IFC categories in a BIM
file. The model’s application can significantly reduce manual classification efforts in BIM
processes, enhancing data reliability and efficiency.

This research has identified a number of promising avenues for future development.
To expand the scope of the study, it would be beneficial to enhance the dataset with
real-life IFC models from disciplines that have not yet been explored, such as roads or
rails. Improving the model could include refining the accuracy of class prediction and
incorporating additional factors such as normalization rates and actual rotation. Fur-
thermore, adopting a multi-agent approach could improve performance by leveraging
various methodologies.

Integrating contextual information about the surrounding elements could lead to more
precise classifications. Investigating alternative representations, such as voxel or raster
images, and extending the research to include more IFC classes or other classification
systems like CCI or Uniclass could significantly extend the tool’s applicability. Finally,
developing a user-friendly interface would likely encourage its adoption among practi-
tioners, thereby increasing its practical utility.
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