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Abstract 
Current research often focusses on the use of Digital Twins for data collection and visualization 
and Machine Learning for data analysis to develop prediction models.  However, these research 
lack discussion on how data to develop predictive models/twin needs to be selected and how they 
contribute to the models’ accuracy and effectiveness. In this paper the authors focus their 
attention on how the data needs to be selected for the development of accurate and cost-effective 
prediction models. The paper developed two machine learning models, one containing redundant 
data and another with redundant data combined as single data points. During testing, both 
models achieved similar accuracy of 0.86, highlighting that redundant data did not add to the 
accuracy of the predictive model/twin. The results also show that collection of redundant 
variables can be eliminated to reduce the cost of data capture and storage. 

Keywords: Machine Learning, Predictive Maintenance, Air Handling Unit, Fault Detection, Data 
Analysis 

1 Introduction 
With the advancements in digitization and data processing, the Architecture, Engineering, and 
Construction industry continues to improve the design, construction, and carbon footprint for 
modern buildings. As the maintenance cost of a building continues to account for more than 65% 
of its facility operation and management cost, building maintenance has become an integral part 
of facility management (Cheng et al. 2020). Facility managers often utilize one of three 
maintenance strategies or programs to perform maintenance of their buildings (Honeywell 
2021): (1) Reactive maintenance, also known as corrective maintenance, refers to an equipment 
maintenance strategy where maintenance is only performed once an asset has broken down, , (2) 
Preventive maintenance (PvM) is a time-based maintenance program that is triggered at a 
predeϐined  time interval based on usage patterns, the criticality of equipment to the building 
functions, and the historical performance of the asset, and (3) Predictive maintenance (PdM) 
relies on periodic or continuous real-time monitoring of an equipment’s operational conditions 
to predict future trends in the equipment’s performance. Using sensors to collect data in real-time 
that is then fed into AI-enabled applications, advanced data analysis tools and algorithms can 
identify potential problems and predict maintenance requirements before equipment breaks 
down. This continuous monitoring of the operational performance of the equipment makes this a 
real-time condition-based maintenance. 

Condition-based Predictive Maintenance provides several beneϐits when compared to 
reactive or preventive maintenance. Predictive Maintenance allows for anticipating when an 
asset may need attention. Issues can then be addressed proactively, resulting in minimized 
downtime. This capability allows a facility manager to know when to dispatch the technician with 



Proc. of the CIB W78 Conference 2024, October 1st-3rd 2024, Marrakesh, Morocco 

the right tools. This provides for better asset performance, fewer repairs and less downtime. With 
an abundance of data coming in from multiple assets, using predictive maintenance, data can be 
analyzed across multiple channels throughout the facility to assist facility managers by drawing 
attention to the assets that are critical to building operations and are predicted to fail in the near 
future. 

The U.S. Department of Energy reported that Predictive Maintenance can save 8% to 12% 
more energy when compared to preventive maintenance and up to 40% when compared to 
reactive maintenance. When comparing asset downtime, McKinsey & Co. reported that predictive 
maintenance can reduce asset downtime by 30% to 50% and increase life expectancy by 20% to 
40% (Honeywell 2021). 

The key to a predictive decision making process in Predictive Maintenance is data (Zonta et 
al. 2020). While developing prediction twins it is essential that useful knowledge is extracted 
from the data related to life-cycle of an asset or building system (Baptista et al. 2018). Integration 
of data from multiple sources like monitoring data, maintenance records, and work orders is 
required to support decision making for predictive maintenance (Cheng et al. 2020). However, 
processing data from a large number of data points does not always contribute to the accuracy of 
the prediction twins.  Collected data can include redundant information that does not improve 
the accuracy of the model but increases the computational requirements or can contain noise data 
that can result in decreased accuracy. 

This research work focuses on answering the question: “What are the effects of understanding 
available data on the development of Prediction model to support Predictive Twin?” This work 
will add to the body of knowledge by drawing attention to the data selection and analysis part of 
predictive maintenance. Appropriate understanding of data will not only improve the predictive 
twin’s accuracy and goal, but will also make the predictive maintenance implementation more 
cost effective. When data requirements are identiϐied, less money is spent on data collection and 
storage as only the required amount of data is collected. Another major beneϐit of understanding 
the data requirements is that it makes the predictive twins more explainable and understandable, 
increasing their use and adoption to support facility management. 

The research utilizes published experimental data for a roof top unit-variable air volume 
system (RTU-VAV) installed in a two-story light-commercial 3,200 sqft experimental facility 
designed to emulate a 1980s-era ofϐice building. The data was generated by the Oak Ridge 
National Laboratory (ORNL) in Tennessee, USA and published by the Lawrence Berkeley National 
Laboratory (Granderson et al. 2023).  The data selected for analysis comprised 60 data points and 
included faulted and unfaulted scenarios of the damper positions of the RTU. Data for faulty 
damper scenarios included damper open position stuck at 5%, 10%, 50%, and 100%. Using the 
published data, the researcher ϐirst conducted a correlation analysis to determine the relevance 
of the different data points to the damper position fault scenario and identify any redundancy in 
the data. The data sets for faulty and fault free scenarios were then combined for a ϐirst run to 
train and test a predictive ML model using all the 60 datapoints. The training run time and 
accuracy of results were recorded and documented. Using the results of the correlation analysis, 
input data points (features) to the ML model were aggregated and other redundant data points 
were eliminated and a second run was conducted to train and test the ML model. The training run 
time and accuracy of results were again recorded and documented. The accuracy and training 
time of the model with and without the redundant data were compared to draw conclusions on 
the effects of data analysis on the prediction model to support the development of predictive 
twins. 

Section 2 of this paper provides a literature review of the current state of the art for predictive 
maintenance and highlights the research gaps. Section 3 discusses in detail the methodology 
adopted to run the comparative analysis of the two ML predictive models to highlight the 
importance of robust data selection process towards developing predictive twins. Section 4 
discusses the implementation of the methodology. The results of the implementation are 
discussed in section 5. Followed by discussion on the ϐindings and future work to this research in 
section 6. 
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2 Literature Review 
Industry 4.0, a term often used to describe the “fourth industrial revolution” has become 
synonymous with the use of enabling technologies related to connectivity, amount of data, new 
devices, inventory reduction, customization and controlled production (Zonta et al. 2020). 
Industry 4.0 has caught the attention of manufacturing industry enabling increased digitization 
and automation to develop digital value chain of product lifecycle from concept to use and 
maintenance (Hossain & Nadeem 2019). In the manufacturing industry, Industry 4.0 has aided in 
improving product quality while decreasing development cost and time (Hossain & Nadeem 
2019). Even though the characteristics of construction projects differ from products developed 
by the manufacturing industry, the concepts of Industry 4.0 can be translated to match the needs 
of the construction industry (Hossain & Nadeem 2019). This translation leads to the coining of 
the term Construction 4.0.  

Construction 4.0 is supported by use of transformative digital technologies such as Building 
Information Modelling (BIM), Common Data Environment (CDE), unmanned aerial systems, 
Augmented Reality, artiϐicial intelligence, cybersecurity, big data and analytics, blockchain, and 
laser scanner (Forcael et al. 2020).  

Beneϐiting from Construction 4.0, predictive maintenance is a facility maintenance and 
management strategy that relies on digital technologies like integration with internet of things, 
artiϐicial intelligence, and integrated systems (Rockwell Automation).  Condition-based 
Predictive Maintenance requires collection of asset or building system operational data 
transmitted by sensors, maintenance records, and work orders (Cheng et al. 2020). Condition-
based Predictive Maintenance can improve facility maintenance and management by increasing 
equipment life, improving efϐiciency, and reducing labor cost (Hosamo et al. 2022).  However 
these beneϐits are dependent on the accuracy and effectiveness of the developed predictive 
maintenance model (Florian et al. 2021). Using technologies such as machine learning, building 
information modelling, and internet of things, research has been conducted to develop and 
implement effective predictive maintenance strategies. Table 1 summarizes literature focused on 
the use of predictive maintenance and outlines the types of data and algorithms used, and results 
achieved. 
 
Table 1. Literature focused on use of Predictive Maintenance Strategies. 

Literature Data Used Algorithms Used Results 

Hosamo et al. 
(2022) 

BIM, Real-Time Sensor Data, 
and Facility Management Data 

Artiϐicial Neural 
Network, Support 
Vector Machine 
and, Decision 
Tree 

Prediction of faults in AHUs using machine learning 
is both functional and beneϐicial towards facility 
maintenance. 

Cheng et al. 
(2020) 

Real-Time Sensor Data, BIM, 
and Facility Management Data 

Artiϐicial Neural 
Network, and 
Support Vector 

Machine 

Prediction of MEP components’ condition was 
possible. 

Al-Aomar et al. 
(2024) 

Data from building 
management system and 
computerized maintenance 
management system 

Support Vector 
Machine, k-
Nearest Neighbor, 
and Decision Tree 

Prediction of asset condition based on scale of 
critical to excellent 

Marzouk & 
Zaher (2020) 

Images of different ϐire 
protection systems 

Convolutional 
Neural Network 

Validated the utility of artiϐicial intelligence (AI) in 
identifying assets that require proactive 
maintenance 

Assaf et al. 
(2020) 

Past air conditioning 
complaints and weather-
related data 

Text Mining and 
Nonlinear 

Autoregressive 
Exogenous 

(NARX) 

Predicted building occupants’ complaints 
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Assaf & Srour 
(2021) 

Unstructured occupant 
complaint logs 

Multi-Layer 
Perceptron 

Assist facility managers in better planning stafϐing 
based on predicted complaints. 

Masdoua et al. 
(2022) 

HVAC systems data generate 
by Paciϐic Northwest National 
Laboratory 

Decision Tree, 
Random Forest, 

and SVM 

Detect and diagnose AHU sensor faults using 
machine learning algorithm 

    
 

The literature review showcases the diversity of research conducted to improve the 
effectiveness of predictive maintenance through the implementation of different machine 
learning algorithms. In parallel, the research also explores areas of facility maintenance that can 
beneϐit from predictive maintenance like predicting asset’s conditions, and occupant complaints. 
However, the scope of these research does not focus on the importance of data selection to 
develop a predictive model.  Hosamo et al. (2022) while developing a predictive model brieϐly 
introduces the importance of feature selection in machine learning approach to ϐilter out 
redundant and noisy data but fails to expand on the topic in terms of effects of feature selection 
on the accuracy and training time of the prediction model. 

This paper aims to ϐill this research gap by highlighting the importance of data analysis for 
developing a machine learning model for predictive maintenance. The authors in this paper 
explore how redundant data can be identiϐied and eliminated and highlights how data analysis 
can affects the goal selection of the machine learning model towards predictive maintenance.    

3 Methodology 
This study explored the importance and need for deϐining data requirements to develop 
predictive models in support of predictive twins. The research utilized experimental hourly data 
for a roof top unit-variable air volume system (RTU-VAV) generated by the Oak Ridge National 
Laboratory (ORNL) in Tennessee, USA and published by the Lawrence Berkeley National 
Laboratory (Granderson et al. 2023). The data included 60 data points measured for the RTU-
VAV system with the RTU Outside Air Damper (OAD) position in a fault-free operation as well as 
faulty operation. The data for the faulty damper position included data measured while the 
damper open position was manually forced to be mechanically stuck at 5%, 10%, 50%, and 100%. 
Data for a fault-free RTU damper position included data during normal damper modulation 
between 10% and 100% based on economizer instructions to open or close the outside air 
damper (OAD).  
 In an HVAC system an economizer is used to utilize the outside air to condition the facility. An 
economizer evaluates outside air temperature and humidity levels, and when appropriate, uses 
the outside air to cool buildings, reducing the load on the mechanical cooling system. A mixing 
box inside the RTU combines outside air with return air in calculated percentages using dampers 
to supply well-conditioned air to the building spaces. It should be noted that the outside air (OA) 
damper is synched with the return air (RA) damper in the RTU-VAV system to provide 100% air. 
For example, a 30% OA damper position requires a 70% RA damper position to maintain a 
balanced air pressure in the space. HVAC economizers use logic controllers and sensors to get an 
accurate read on outside air quality. As the economizer detects the right level of outside air to 
bring in, it utilizes the OA and RA dampers to control the amount of air that gets pulled in, 
recirculated and exhausted from a building space. For example, when the outside air temperature 
and humidity levels can effectively condition facility spaces, the outside air damper (OAD) is 
opened to 100% and the return air damper (RAD) is fully closed.  During cold or hot weather, 
outside air will be mixed with return air to condition the air to the required set point used before 
being supplied to the spaces. This might require opening the outside air damper to 40% and the 
return air damper to 60%.  
 Using the data published, the research was divided into three steps presented in Figure 1. 
Step 1 focused on a search to acquire existing data related to HVAC system operation. Literature 
review was conducted to identify literature focused on providing data to the scientiϐic community 
to support research and development of predictive twins and to support predictive maintenance. 
Once the needed data was identiϐied, appropriate data was ϐiltered and labeled to train and test 
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two machine learning models. A Spearman correlation analysis was conducted in step-2 to 
calculate correlation between the data points (features) and the faulty/non-faulty status of the 
OA damper. Based on this correlation, redundant features would be identiϐied and later combined 
or eliminated from the analysis. In step-3 two analysis runs are conducted for training and testing 
a neural network. In the ϐirst run, the neural network was trained and tested using 58 data points 
as input (features), and two data points (faulty/non-faulty status, and damper position) as output 
(labels). In the second run, results from the correlation analysis are applied to eliminate or 
combine redundant data points and reduce the number of input data (features) to 22 data points. 
Data points used as output is not changed. The new model was trained and tested.  

The two models were compared to analyze the impact of reducing the total number of input 
data points (features) from 58 to 22 on model accuracy and training time and to draw conclusions 
on the need to specify the data requirements to use as input while developing predictive twins. 

 

 

4 Implementation 

4.1 Step 1: Data Acquisition 
To explore the impact of data selection on the implementation of Predictive Twins, the research 
explored sources for available fault detection and diagnostics data collected by others. Literature 
review was conducted to identify referenced open-source experimental fault detection and 
diagnostics data collected for mechanical systems.  Ahern et al. (2023) provided a dataset 
collected with the objective of progressing the research work for fault detection and diagnostics. 
However, the datasets provided were unlabeled and included data issues like missing features, 
missing time interval, and inaccurate data. Lawrence Berkeley National Laboratory in support of 
Fault Detection and Diagnostics of Roof Top Units collected and made available various data for 
fault free and faulty runs of mechanical systems (Granderson et al. 2023). The data selected for 
this research was for a Roof Top Unit – Variable Air Volume (RTU-VAV) system collected by Oak 
Ridge National Laboratory in their light-commercial ϐlexible research platform (FRP). The FRP 
depicts a 1980s-era two story 3,200 sq-ft facility with 10 spaces which are reserved for 
experiments and remains unoccupied with internal loads emulated. Due to the labeled nature and 
completeness of the data, it was found suitable and used in this research. 
 The data contained operational variables (data points) collected from 56 different sensors 
located in the HVAC system and the facility space. An additional 4 variables were also included in 
the dataset to depict the different seasons (Fall, Summer, Spring, and Winter) during which the 
data was collected. A description for some examples of the 60 variables is shown in Table 2. 
 
Table 2. Example of variables collected by Granderson et al. (2023). 

No. Data Point Name Data Point Abbreviation Description Unit 

1 
RTU: Outdoor Air Damper Control 
Signal RTU_OA_DMPR_DM Outside Air Damper Position 0-1 

2 RTU: Outside Air Temperature RTU_OA_TEMP Outside Air Temperature °F 

3 RTU: Electricity RTU_TOT_WATT RTU Electricity Consumption Rate W 

4 Terminal: Room 102 Air 
Temperature TERM_RM_TEMP_102 Room 102’s Ambient Temperature  °F 

5 VAV Box: Room 102 Power 
Consumption VAV_RM_WATT_102 Room 102’s VAV Box Power 

Consumption rate W 

     

Figure 1. Methodology adopted to highlight the importance feature selection. 
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These 60 data points deϐine the feature space for the training of the predictive model. The 

features represented data describing the damper control signals, air temperatures, volumetric 
ϐlow rate, electric and gas consumption rate for VAVs, fans, and RTU, heating and cooling 
temperature setpoint, room temperature and humidity, and, occupancy mode (Granderson et al. 
2023). The data contained feature values belonging to fault-free runs and faulty runs for issues 
with dampers. Data for fault free cases was collected for a day immediately prior to the faulty-
run. Faults were introduced at 12 am following the fault free run and data was collected for a day 
before restoring the normal run.  
 The research used data associated with the operation of the OA damper in fault-free and faulty 
modes. This included data for the damper operating in normal conditions (fault-free), and data 
collected while the damper was operating in a user-induced faulty condition. This included data 
collected while the damper is forced to be stuck at 5%, 10%, 50%, and 100% open position 
scenarios.  

4.2  Step 2: Correlation and Data Analysis 
The published damper fault detection and diagnostics data consisted of 60 data points. If all of 
these variables are used to develop a ML model to predict the operational status of the damper 
(fault-free or faulty), 60 variables would be used as input (features) with one output (label) 
indicating whether the system OA damper is running in fault-free or faulty mode. In this step, the 
researchers conducted a correlation analysis in order to determine if all 60 variables are relevant 
inputs and to identify the variables which had the most impact on the accuracy and the run time 
of the model. It is hypnotized that some of these 60 variables may be redundant and need to be 
combined or eliminated.  
 A Spearman Correlation, also known as Spearman’s rank correlation coefϐicient, was used to 
assess the direction and strength of the monotonic relationships between the 60 variables. 
Speciϐically, we were interested to identify which out of the 60 variables were the highest 
indicators of whether the OA Damper is operating in a fault-free or faulty mode. In other words, 
we wanted to know what are the variables that had the highest correlation with the damper’s 
operational status. 
 To facilitate the correlation analysis, a preliminary predictive goal of binary classiϐication was 
deϐined where for a given data row the model would predict a faulty or fault-free run. As per this 
goal, the predictive model was provided with data that included all 60 data variables as features 
and each row of the data was labelled as faulty or fault-free run. 
 A spearman coefϐicient was calculated. Spearman coefϐicient is a “non-parametric rank 
statistical measure of the strength and the direction of the arbitrary monotonic association 
between two ranked variables or one ranked variable and one measured variable” (Xiao et al. 
2016). Spearman coefϐicient is a convenient correlation matrix to use as it does not need to make 
assumption about the distribution frequency and linear relationship between the variables (Xiao 
et al. 2016). Since the distribution of data selected in this paper was not known, the Spearman 
coefϐicient is selected to perform correlation analysis. 

Spearman Correlation Coefϐicient is calculated between features and features, and features 
and labels. The value of Spearman Coefϐicient ranges from -1 to 1. A value of 1 shows a high 
positive correlation i.e. increase in the value of one result in increase in the value of another. -1 
indicates a high negative correlation i.e. increase in the value of one result in decrease in the value 
of another. If no correlation exists a value of 0 is assigned. Figure 2 shows the results of correlation 
analysis for the dataset. 
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As shown in Figure 2, the x axis and y axis are identical with the ϐirst 60 rows/columns 
representing the 60 features provided in the dataset and the last row/column representing the 
labels i.e., faulty or fault-free run.  

Figure 2 shows a high feature-label correlation between the OAD position and the label, and 
the RAD position and the label. The correlation results indicated that while predicting fault-free 
and faulty run accurately, the value of the OAD and the RAD position contributed the most. 
However, a deeper analysis of the data revealed that this high correlation was due to the fact that 
in the dataset, large quantity of data rows that had the OAD open position value as 5%, 10%, 50%, 
or 100% belonged to the faulty run class. This created a class imbalance in the data. If the dataset 
gets used to predict fault free runs from faulty runs, the trained prediction model will most likely 
label all data with OAD values of 5%, 10%, 50%, or 100% as faulty run irrespective of other 
features. 

Based on this analysis, the selected dataset cannot be used for the binary classiϐication of 
fault-free and faulty run with OAD and RAD position present as features in the dataset, as this 
would result in a class imbalance. Therefore, modiϐications were made to the training of the 
prediction model. The OAD and RAD position variables were removed as features, and the OAD 
position was added as a label. Based on this initial modiϐication, the goal of the predictive model 
was not only to predict the status of the OAD position (i.e. faulty or fault free), but also to predict 
the damper position.  

Figure 2. Result of Correlation Analysis  
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Figure 2 also shows a high feature-feature correlation between the humidity of different 
rooms, temperature of different rooms, VAV box supply air temperature for different room, and 
VAV boxes power consumption for different rooms. To reduce redundancy, variables that showed 
high feature-feature correlation were combined using a calculated average value.. 

Based on the results of the correlation analysis, the OAD and RAD position variables were 
removed from the features to eliminate class imbalance. The label space of the dataset was also 
modiϐied to allow for the prediction of faulty and fault free run and damper position. This 
modiϐication created dataset 1 of this research which included 58 features and 2 labels. The 
dataset was further modiϐied by combining redundant features resulting in a further reduction of 
the features from 58 to 22 creating dataset 2. The features that were combined included variables 
that provided information on the humidity levels in different rooms, temperature in different 
rooms, VAV supply air temperature for different room, and VAV power consumption for different 
rooms. 

4.3 Step 3: Training and Testing Prediction Models   
 The two datasets, one using the 58 data points and the other with 22 data points were used 

to develop two ML models used for the analysis. These datasets were trained and tested using an 
Artiϐicial Neural Network (ANN). The ϐirst training was conducted with the ϐirst dataset 
containing the 58 variables to set up a baseline accuracy and training time. The second training 
was conducted using the second aggregated dataset to determine the impact of combining 
redundant data on the accuracy and training time of the model. 

The two datasets were ϐirst split into two sub-sets, with 80% being used for training and 20% 
being used for testing. The training dataset was used to train-validate-train the ANN. Using 
GridSearchCV, two hyperparameters were tuned during the train-validate cycle to ϐind their 
optimum value. The options for hyperparameters value are deϐined in Table 3. 

 
Table 3. Possible Hyperparameter values. 

Hyperparameters Possible values 
Layers [20], [40, 20], [45, 30, 15] 
Activation Function Sigmoid, Relu 
  

 
 Using the two optimized hyperparameter values, the two ANNs are retrained during the train 

cycle and the training time is measured. The trained ANNs are then tested using testing data. The 
training time and accuracy of each model were measured and compared. 

5 Results 
As a result of hyperparameter tunning, a 3 hidden layer AAN with 45 nodes in the ϐirst hidden 
layer, 30 nodes in the second hidden layer, and 15 nodes in the third hidden layer was the most 
preferred architecture. This AAN used ‘relu’ function as the activation function. The accuracy of 
both the trained ANN models was found to be 0.86. These accuracy measurements showed that 
combining redundant data had no adverse effect on the predictive capability of the model. This 
may be an indicator that, for future implementation of predictive models and predictive twin for 
facility maintenance and management, the cost and time of capturing real-time data can be 
reduced by identifying critical variables and eliminating redundant data points that has low 
impact. In this research, variables that had low impact on the fault detection and diagnostics of 
OAD included humidity, temperature, VAV box supply air temperature, and VAV boxes power 
consumption in the different building spaces.  
 Training time for the ϐirst predictive model with 58 variables was measured to be 65.26 
seconds. Training time for the aggregated second model with 22 variables was 65.37 seconds. 
Further study needs to be conducted to draw conclusions on the increase in the training time 
when redundant data is removed. Figure 3 shows the comparison of training time and accuracy 
respectively for the ANN models trained using dataset 1 and dataset 2.  
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6 Discussion and Conclusion 
The research showed that combing and eliminating redundant data in the feature space to 
develop a predictive model capable of identifying fault free runs from faulty runs along with 
damper position has no adverse effect on the accuracy of the model. However, when thinking 
about the cost of implementation of predictive maintenance and predictive twins, collection and 
storage of redundant data points can increase the cost of implementation. Therefore, identifying 
clear data requirements plays an important role in reducing the cost of implementation. 
 The research work also utilized correlation analysis as a data analysis technique to measure 
the quality of data being used for predictive maintenance. Class imbalance in the training data can 
impact the effectiveness of the predictive model and needs to be identiϐied early on. Data points 
highly correlated with the expected output need to be studied further to ensure that they provide 
necessary information to enable an accurate prediction. The correlation analysis in this research 
work identiϐied OAD and RAD position as the data points providing the most information on 
predicting a fault free run from a faulty run. However, a deeper analysis showed that this 
correlation was a result of class imbalance which could signiϐicantly decrease the effectiveness of 
the predictive model. To mitigate this issue, the researchers eliminated the OAD and RAD position 
variables as features and changed the predictive goal to predict fault free runs from faulty runs 
and the current OAD position. 
 Through this research the authors set out to convey the importance of proper data selection, 
when training prediction models to support predictive maintenance and developing predictive 
twins. As predictive maintenance is a complex process, the model developed to support it will 
also be involved in complex decision making. This research shows the importance of proper data 
selection for the development of cost-effective prediction models. This research adds to the body 
of knowledge by providing an initial investigation into how important it is to select appropriate 
features when developing effective prediction models to reduce implementation costs. The 
authors hope that as research in the ϐield of predictive twins matures, more attention is given to 
data selection. 
 As part of the continued research agenda, the authors plan to improve on the results of this 
research by conducting more detailed analysis on the impact of data selection on the training time 
and accuracy. The authors would also like to test different methods to identify, combine and/or 
eliminate redundant data and to address data challenges like class imbalance. 
 In this research Spearman Correlation Coefϐicient was used to understand the feature-feature 
and feature-label relationships. As part of future research, the authors will explore different 
correlation matrix and feature selection methods to provide comparative analysis on how 
different methods can be selected based on predictive maintenance requirements. 
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